Прожектор диодный своими руками: Делаем вместе светодиодный прожектор своими руками, все подробно

Рукам
alexxlab

Содержание

Простой светодиодный прожектор своими руками

Сегодня весь ассортимент имеющихся на рынке светодиодных прожекторов условно можно разделить на 2 группы: недорогие низкокачественные и фирменные изделия хорошего качества с высокой стоимостью. Стоит отметить, что вторая группа активно подделывается недобросовестными производителями из Китая, что серьезно усложняет выбор.

В данной статье рассмотрим, как сделать светодиодной прожектор на 220 В своими руками, качество которого в разы выше дешевых изделий китайского производства.

Содержание

  • 1 Необходимые детали и материалы
  • 2 Схема и печатная плата простого светодиодного прожектора
  • 3 Процесс сборки
  • 4 Плюсы и минусы конструкции

Необходимые детали и материалы

Все материалы, используемые в сборке, есть в хозяйственных магазинах и в отделах по продаже радиоэлектронных компонентов. В крайнем случае их можно заказать через онлайн-магазины. Главная деталь – это корпус от галогенного прожектора.

Если прожектор планируется использовать на открытом воздухе, то степень защиты корпуса должна быть не ниже IP67.

Далее понадобится двусторонний фольгированный стеклотекстолит прямоугольной формы. Его размер зависит от внутренних размеров корпуса галогенного прожектора. Для крепления текстолита потребуется алюминиевая пластина, которая также будет служить теплопроводом между светодиодами и корпусом прожектора.

Для более эффективного отвода тепла от светодиодов, рекомендуется использовать максимально тонкий стеклотекстолит.

Светодиоды будем устанавливать SMD 5050 в количестве 100 шт. Для их питания потребуется набор недорогих радиоэлементов, о выборе которых будет сказано чуть ниже. Для монтажа компонентов на печатную плату понадобится стандартный инструмент радиолюбителя. Кроме этого, пригодится умение изготавливать самодельные печатные платы, термопаста и провода.

Схема и печатная плата простого светодиодного прожектора

В качестве источника питания светодиодного прожектора применим схему с гасящим конденсатором, как наиболее простое и доступное каждому решение. Её принцип действия неоднократно рассматривался ранее. Поэтому укажем только основные нюансы, на которые следует обратить внимание.

По входу источника питания стоит неполярный конденсатор ёмкостью 1 мкФ на 400 или 630 вольт. Параллельно с ним включен резистор 1 МОм. Можно подключить любой другой резистор мощностью 0,25 Вт и более с сопротивлением 240–1000 кОм. Далее следует диодный мост, собранный на четырёх недорогих диодах 1N4007 (Iпр=1 А, Uобр=1000 В). Его можно заменить диодной сборкой с такими же параметрами. Выпрямленное напряжение сглаживается полярным конденсатором на 10 мкФ 400 В.

Светодиоды на печатной плате прожектора разделены на две последовательно соединённые группы по 50 шт. в каждой. В схеме для светодиодов не используются ограничительные резисторы.

При подключении источника питания к светодиодам между ними был установлен мультиметр в режиме измерения тока. Результат показал 38 мА в обеих ветвях или 19 мА в каждой, что соответствует предварительно проведенным расчетным данным. При сетевом напряжении 220 вольт ток через каждый светодиод не превысит номинальное значение в 20 мА.

Печатная плата изготавливается стандартным способом с помощью лазерного принтера и не требует особой точности. Обратная сторона платы остаётся нелуженой для лучшего отвода тепла. Монтажные отверстия необходимо разместить так, чтобы с их помощью обеспечить надёжный контакт с радиатором.

Плата светодиодного прожектора в файле Sprint Layout 6.0: LED-plata.lay6

Процесс сборки

Начнем собирать прожектор с установки светодиодов на печатную плату. Для этого можно воспользоваться как паяльной станцией, так и простым маломощным паяльником.

По завершении следует проверить правильность монтажа и работоспособность каждого светодиода отдельно, используя для этого мультиметр в режиме прозвонки.

Следующим этапом по сборке LED-прожектора своими руками является пайка блока питания навесным способом. Расположение радиодеталей нужно продумать так, чтобы они поместились в отсеке, куда заводят провод питания. Чтобы избежать короткого замыкания, оголённые участки изолируем термоусадочной трубкой. Проверяем работоспособность источника питания сначала на холостом ходу, а затем с нагрузкой (светодиодами).

После успешного кратковременного запуска переходим к окончательной сборке светодиодного прожектора. Сначала из алюминиевой пластины делаем радиатор в виде уголка. Таким образом, чтобы одна его полка прилегала к внутренней стенке прожектора, а ко второй крепилась плата со светодиодами. С целью повышения теплоотдачи в местах контакта наносим термопасту, после чего производим окончательную сборку.

Плюсы и минусы конструкции

Явным преимуществом конструкции является простота сборки и доступность используемых деталей. В результате проведенных операций получился самодельный светодиодный прожектор направленного действия на светодиодах SMD 5050 со светоотдачей 18 лм каждый. В сумме световой поток самодельного прожектора составит примерно 1600–2000 лм. Точное значение освещенности нужно измерять люксметром. Оно зависит от тока нагрузки и цветовой температуры используемых светодиодов.

Отсутствие ограничительного резистора – минус рассмотренной электрической схемы, благодаря чему её надёжность в регионах с нестабильным напряжением сети резко снижается. Значительный скачок напряжения станет причиной выгорания светодиодов. Поэтому рекомендуем немного усовершенствовать самодельный прожектор, дополнив его схему питания двумя резисторами сопротивлением 1–2 Ом.

Не стоит забывать, что светодиодное освещение продолжает прогрессировать, предлагая новые модели твердотельных источников света. В частности, место SMD светодиодов может занять COB матрица, розничная цена которой уже доступна широкому кругу потребителей. COB матрица упрощает монтаж, уменьшает размеры платы, снижает общее время изготовления прожектора в домашних условиях.

Вот только отводить тепло от многокристального чипа придётся с помощью вентилятора, а значит, придётся доработать блок питания. Для этих целей подойдёт компьютерный кулер, для которого достаточно места внутри корпуса. Но в этом случае прожектор нельзя будет эксплуатировать под отрытым небом.

Ещё одним прогрессивным шагом станет замена омеднённого текстолита на фольгированный алюминий. На самом деле этот трёхслойным материал сделан из текстолита, с одной стороны которого нанесена медь для вытравливания печатных проводников, а с другой – алюминий для отвода тепла. Он идеально подходит для построения современных светодиодных фонарей и прожекторов большой мощности.

Подводя итоги, хочется отметить, что сконструировать самодельный прожектор на светодиодах под силу каждому человеку, который «дружит» с паяльником и электричеством. А ещё сборка подобного самодельного устройства не только украсит досуг, но и станет экономичным осветительным прибором в домашнем хозяйстве.

Светодиодный прожектор своими руками

Светодиодные лампы и ленты уже давно модная и стильная вещь интерьера. Но недостаток их заключается в дороговизне. Многим хотелось бы установить светодиодные приспособления, но цена слишком высока, плюс недопонимание принципов их работы. Предлагаем вам собрать альтернативный и интересный источник света собственными руками.

Для того, чтобы самим собрать светодиодный прожектор, вам не потребуется специальных знаний и навыков. Всего 30-40 минут свободного времени, набор для светодиодных ламп, пару простых инструментов и ваше желание — вот и все.
Обращаем ваше внимание, что большая часть имеющихся в продаже светодиодных приспособлений, в частности и наборов, имеют завышенные характеристики от производителей. Отметим, что используя именно такой набор как базу можно смастерить отличный прожектор или фонарик.

Данный прожектор можно использовать для выделения светом ландшафта территории дачи или частного дома. Также для расстановки акцентов подсветки дома, для освещения объектов на расстоянии около 20 — 30 м при использовании камер наружного наблюдения. Для реализации любой вашей световой фантазии и идеи!
Но, самое главное, это экономичность и малая потребляемость электроэнергии. Так ваш прожектор будет использовать всего на всего 6 Вт электрической мощности.

Итак, приступим! Возьмите светодиодную лампу, при этом внимательно изучите ее описание и характеристики от производителя. Эта лампа будет использоваться при создании светодиодного прожектора.
Лучше взять лампу, которая будет светить не менее чем на 180 градусов с углом рассеивания света около 30 градусов. Так вы рассеете световой поток по сторонам и направите в небо. Это самый подходящий вариант для создания прожектора. Ведь при одной и той же мощности светодиода вы можете осветить объекты, которые находятся дальше!
В качестве корпуса используем корпус от любого ненужного прожектора. Если есть совсем немного лишних денег, то можно приобрести новый корпус, который стоит очень дешево или же воспользоваться корпусом из набора.
В центр корпуса нужно прикрепить новый патрон под цоколь желательно силиконовым герметиком. Если есть время и желание можно прикрепить его с помощью механического крепежа патрона. Вырезаем по центру рефлектора небольшое отверстие, в которое должен входить цоколь светодиодной лампы, выбранной вами.
Важно знать что, чтобы проконтролировать направление потока света от лампы, нужно собирать прожектор до того момента пока засохнет герметик.
Вдобавок светодиодная лампа с патроном должна точно помещаться в корпусе и при закрытом стекле, немного прижимаясь ним.
Провода, выходящие из патрона, постарайтесь вывести в коробку монтажа, которая расположена на корпусе прожектора. Советуем загерметизировать или проклеить все зазоры и возможные неплотности прозрачным клеем – герметиком.
После окончания сборки проверьте правильность работы прожектора. Подключите лампу в сеть. Совет—рекомендация: если хотите увеличить яркость, можете установить две лампы светодиодного назначения. Места в корпусе прожектора должно хватит! Как видите, все просто и легко! Так вы без особых усилий собрали светодиодный прожектор своими руками.

светоизлучающих диодов (LED) — SparkFun Learn

Авторы: Ник Пул, bboyho

Избранное Любимый 67

Введение

Светодиоды окружают нас повсюду: В наших телефонах, автомобилях и даже домах. Каждый раз, когда загорается что-то электронное, есть большая вероятность, что за этим стоит светодиод. Они бывают самых разных размеров, форм и цветов, но независимо от того, как они выглядят, у них есть одна общая черта: они — бекон электроники. Считается, что они делают любой проект лучше, и их часто добавляют к маловероятным вещам (к всеобщему удовольствию).

Однако, в отличие от бекона, они уже не годятся после того, как их приготовили. Это руководство поможет вам избежать случайных светодиодных барбекю! Впрочем, обо всем по порядку. Что именно это этот светодиод, о котором все говорят?

Светодиоды (это «элли-и-ди») представляют собой особый тип диодов, которые преобразуют электрическую энергию в свет. На самом деле, светодиод означает «светоизлучающий диод». (Он делает то, что написано на банке!) И это отражено в сходстве между диодом и символами схемы светодиода:

Короче говоря, светодиоды похожи на крошечные лампочки. Тем не менее, светодиоды требуют гораздо меньше энергии для освещения по сравнению с ними. Они также более энергоэффективны, поэтому они не нагреваются, как обычные лампочки (если только вы не накачиваете их энергией). Это делает их идеальными для мобильных устройств и других приложений с низким энергопотреблением. Однако не сбрасывайте их со счетов в мощной игре. Светодиоды высокой интенсивности нашли свое применение в акцентном освещении, прожекторах и даже автомобильных фарах!

Вы уже испытываете тягу? Тяга поставить светодиоды на все подряд? Хорошо, оставайтесь с нами, и мы покажем вам, как!

Рекомендуемая литература

Вот некоторые другие темы, которые будут обсуждаться в этом руководстве. Если вы не знакомы с каким-либо из них, пожалуйста, ознакомьтесь с соответствующим руководством, прежде чем идти дальше.

Что такое цепь?

Каждый электрический проект начинается со схемы. Не знаете, что такое цепь? Мы здесь, чтобы помочь.

Избранное Любимый 82

Что такое электричество?

Мы можем видеть электричество в действии на наших компьютерах, освещая наши дома, как удары молнии во время грозы, но что это такое? Это не простой вопрос, но этот урок прольет на него свет!

Избранное Любимый 84

Диоды

Праймер для диодов! Свойства диодов, типы диодов и применение диодов.

Избранное Любимый 71

Электроэнергия

Обзор электроэнергии, скорость передачи энергии. Мы поговорим об определении мощности, ваттах, уравнениях и номинальных мощностях. 1,21 гигаватт обучающего веселья!

Избранное Любимый 57

Полярность

Знакомство с полярностью электронных компонентов. Узнайте, что такое полярность, в каких частях она присутствует и как ее определить.

Избранное Любимый 55

Метрические префиксы и единицы СИ

В этом руководстве объясняется, как использовать и преобразовывать стандартные метрические префиксы.

Избранное Любимый 24

Рекомендуем к просмотру

Как их использовать

Итак, вы пришли к разумному выводу, что нужно ставить светодиоды на все. Мы думали, ты придешь.

Давайте пройдемся по книге правил:

1) Полярность имеет значение

В электронике полярность указывает, является ли компонент схемы симметричным или нет. Светодиоды, будучи диодами, пропускают ток только в одном направлении. А когда нет тока, нет и света. К счастью, это также означает, что вы не сможете сломать светодиод, подключив его наоборот. Скорее просто не получится.

Положительная сторона светодиода называется «анодом» и маркируется более длинным «выводом» или ножкой. Другая, отрицательная сторона светодиода называется катодом . Ток течет от анода к катоду и никогда в обратном направлении. Перевернутый светодиод может препятствовать правильной работе всей цепи, блокируя протекание тока. Так что не волнуйтесь, если добавление светодиода сломает вашу цепь. Попробуйте перевернуть его.

2) Сила тока Moar равна мощности Moar Light

Яркость светодиода напрямую зависит от потребляемого им тока. Это означает две вещи. Во-первых, сверхъяркие светодиоды быстрее разряжают батареи, потому что дополнительная яркость достигается за счет дополнительной потребляемой мощности. Во-вторых, вы можете контролировать яркость светодиода, контролируя величину тока через него. Но создание настроения — не единственная причина сократить потребление тока.

3) Существует такая вещь, как слишком большая мощность

Если вы подключите светодиод напрямую к источнику тока, он попытается рассеять столько энергии, сколько ему разрешено потреблять, и, подобно трагическим героям прошлого, он уничтожить себя. Вот почему важно ограничить величину тока, протекающего через светодиод.

Для этого используем резисторы. Резисторы ограничивают поток электронов в цепи и защищают светодиод от слишком большого тока. Не волнуйтесь, для определения наилучшего номинала резистора требуется лишь немного базовой математики. Вы можете узнать все об этом в примерах применения нашего руководства по резисторам!

Резисторы

1 апреля 2013 г.

Учебное пособие по резисторам. Что такое резистор, как они ведут себя параллельно/последовательно, расшифровка цветовых кодов резисторов и применение резисторов.

Избранное Любимый 58

Пусть вас не пугает вся эта математика, на самом деле довольно сложно все испортить слишком сильно. В следующем разделе мы рассмотрим, как сделать светодиодную схему без калькулятора.

Светодиоды без математики

Прежде чем мы поговорим о том, как читать техническое описание, давайте подключим несколько светодиодов. В конце концов, это учебник по светодиодам, а не учебник по для чтения .

Это также не учебник по математике, поэтому мы дадим вам несколько практических правил для запуска и работы светодиодов. Как вы, вероятно, поняли из информации в предыдущем разделе, вам понадобится батарея, резистор и светодиод. Мы используем батарею в качестве источника питания, потому что ее легко найти, и она не может обеспечить опасное количество тока.

Базовый шаблон для светодиодной цепи довольно прост, просто подключите батарею, резистор и светодиод последовательно. Так:


Резистор 330 Ом

Хорошим номиналом резистора для большинства светодиодов является 330 Ом (оранжевый — оранжевый — коричневый). Вы можете использовать информацию из последнего раздела, чтобы помочь вам определить точное значение, которое вам нужно, но это светодиоды без математики . Итак, начните с включения резистора 330 Ом в приведенную выше схему и посмотрите, что произойдет.

Метод проб и ошибок

Что интересно в резисторах, так это то, что они рассеивают дополнительную мощность в виде тепла, поэтому, если у вас есть резистор, который нагревается, вам, вероятно, нужно использовать меньшее сопротивление. Однако, если ваш резистор слишком мал, вы рискуете сжечь светодиод! Учитывая, что у вас есть несколько светодиодов и резисторов, вот блок-схема, которая поможет вам спроектировать схему светодиодов методом проб и ошибок:


Броски с батарейкой типа «таблетка»

Еще один способ зажечь светодиод — просто подключить его к батарейке типа «таблетка»! Так как батарейка типа «таблетка» не может обеспечить ток, достаточный для повреждения светодиода, вы можете соединить их напрямую! Просто вставьте батарейку типа «таблетка» CR2032 между выводами светодиода. Длинная ножка светодиода должна касаться стороны батареи, отмеченной знаком «+». Теперь вы можете обмотать все это лентой, добавить магнит и приклеить к чему-либо! Ура метателям!

Конечно, если вы не получаете отличных результатов методом проб и ошибок, вы всегда можете взять свой калькулятор и посчитать. Не волнуйтесь, рассчитать наилучшее значение резистора для вашей схемы несложно. Но прежде чем вы сможете определить оптимальное значение резистора, вам нужно найти оптимальный ток для вашего светодиода. Для этого нам нужно сообщить в таблицу…

Узнать подробности

Не подключайте никакие странные светодиоды в свои цепи, это просто вредно для здоровья. Познакомьтесь с ними первыми. А как лучше читать даташит.

В качестве примера мы рассмотрим техническое описание нашего базового красного 5-мм светодиода.

LED Current

Начиная сверху и спускаясь вниз, первое, с чем мы сталкиваемся, это очаровательный стол:

Ах, да, но что все это значит?

В первой строке таблицы указано, какой ток ваш светодиод сможет непрерывно выдерживать. В этом случае вы можете дать ему 20 мА или меньше, и он будет светить ярче всего при 20 мА. Вторая строка говорит нам, каким должен быть максимальный пиковый ток для коротких импульсов. Этот светодиод может выдерживать короткие скачки до 30 мА, но вы не хотите поддерживать этот ток слишком долго. Это техническое описание даже достаточно полезно, чтобы предложить стабильный диапазон тока (в третьем ряду сверху) 16-18 мА. Это хорошее целевое число, которое поможет вам произвести расчеты резисторов, о которых мы говорили.

Следующие несколько строк менее важны для целей данного руководства. Обратное напряжение — это свойство диода, о котором в большинстве случаев не стоит беспокоиться. Рассеиваемая мощность — это мощность в милливаттах, которую светодиод может использовать до того, как он выйдет из строя. Это должно работать само собой, пока вы держите светодиод в пределах рекомендуемых значений напряжения и тока.

Напряжение светодиодов

Посмотрим, какие еще столы они здесь поставили. .. Ах!

Это полезный столик! Первая строка сообщает нам, каким будет прямое падение напряжения на светодиоде. Прямое напряжение — это термин, который часто встречается при работе со светодиодами. Это число поможет вам решить, какое напряжение потребуется вашей схеме для питания светодиода. Если у вас есть более одного светодиода, подключенного к одному источнику питания, эти цифры действительно важны, потому что прямое напряжение всех светодиодов, сложенных вместе, не может превышать напряжение питания. Мы поговорим об этом более подробно позже в более подробном разделе этого руководства.

Длина волны светодиода

Во второй строке этой таблицы указана длина волны света. Длина волны — это, по сути, очень точный способ объяснить, какого цвета свет. Это число может немного варьироваться, поэтому в таблице указаны минимум и максимум. В данном случае это от 620 до 625 нм, что находится как раз на нижнем красном конце спектра (от 620 до 750 нм). Опять же, мы рассмотрим длину волны более подробно в более подробном разделе.

Яркость светодиода

Последняя строка (помеченная как «Интенсивность света») показывает, насколько ярким может быть светодиод. Единица mcd, или милликандела — стандартная единица измерения интенсивности источника света. Этот светодиод имеет максимальную интенсивность 200 мкд, что означает, что он достаточно яркий, чтобы привлечь ваше внимание, но не совсем яркий фонарик. При 200 мкд этот светодиод мог бы стать хорошим индикатором.

Угол обзора

Далее у нас есть веерообразный график, представляющий угол обзора светодиода. Различные стили светодиодов будут включать линзы и отражатели, чтобы либо концентрировать большую часть света в одном месте, либо распространять его как можно шире. Некоторые светодиоды подобны прожекторам, испускающим фотоны во всех направлениях; Другие настолько направленны, что вы не можете сказать, что они включены, если не смотрите прямо на них. Чтобы прочитать график, представьте, что светодиод стоит прямо под ним. «Спицы» на графике обозначают угол обзора. Круглые линии представляют интенсивность в процентах от максимальной интенсивности. Этот светодиод имеет довольно узкий угол обзора. Вы можете видеть, что если смотреть прямо вниз на светодиод, он наиболее яркий, потому что при 0 градусах синие линии пересекаются с самым внешним кругом. Чтобы получить угол обзора 50%, угол, при котором интенсивность света вдвое меньше, проследите за кругом 50% вокруг графика, пока он не пересечет синюю линию, затем следуйте по ближайшему выступу, чтобы считать угол. Для этого светодиода угол обзора 50% составляет около 20 градусов.

Размеры

Наконец, механический чертеж. Это изображение содержит все размеры, которые вам понадобятся для установки светодиода в корпус! Обратите внимание, что, как и у большинства светодиодов, у этого есть небольшой фланец внизу. Это удобно, когда вы хотите установить его в панель. Просто просверлите отверстие идеального размера для корпуса светодиода, и фланец предотвратит его падение!

Теперь, когда вы знаете, как расшифровать техническое описание, давайте посмотрим, какие причудливые светодиоды вы можете встретить в дикой природе. ..

Типы светодиодов

Поздравляем, вы знаете основы! Может быть, вы даже получили в свои руки несколько светодиодов и начали их освещать, это потрясающе! Как бы вы хотели активизировать свою игру с миганием? Давайте поговорим о том, как сделать что-то необычное за пределами вашего стандартного светодиода.

Крупный план суперяркого 5-мм светодиода Крупный план

Типы светодиодов

Вот другие персонажи.

RGB-светодиоды

RGB-светодиоды (красный-зелено-синий) на самом деле представляют собой три светодиода в одном! Но это не значит, что он может делать только три цвета. Поскольку красный, зеленый и синий являются аддитивными основными цветами, вы можете контролировать интенсивность каждого из них, чтобы создать любой цвет радуги. Большинство светодиодов RGB имеют четыре контакта: по одному для каждого цвета и общий контакт. У некоторых общий штырек является анодом, а у других катодом.

RGB-светодиоды с обычным прозрачным катодом

Светодиоды с интегральными схемами

Цикличность

Некоторые светодиоды умнее других. Возьмем, к примеру, велосипедный светодиод. Внутри этих светодиодов на самом деле есть интегральная схема, которая позволяет светодиоду мигать без какого-либо внешнего контроллера. Вот крупным планом микросхема (большой черный квадратный чип на кончике наковальни), управляющая цветами.

5-миллиметровый светодиод с медленным циклом крупным планом

Просто включите его и смотрите, как он работает! Они отлично подходят для проектов, где вы хотите немного больше действий, но не имеете места для схемы управления. Есть даже мигающие светодиоды RGB, которые переключаются между тысячами цветов!

Адресные светодиоды

Другие типы светодиодов могут управляться индивидуально. Существуют различные наборы микросхем (WS2812, APA102, UCS1903 и многие другие), используемые для управления отдельными светодиодами, соединенными вместе. Ниже показан крупный план WS2812. Большая квадратная микросхема справа управляет цветами по отдельности.

Адресный WS2812 PTH Close Up

Встроенный резистор

Что это за магия? Светодиод со встроенным резистором? Это верно. Существуют также светодиоды с небольшим токоограничивающим резистором. Если вы внимательно посмотрите на изображение ниже, на штыре есть небольшая черная квадратная микросхема для ограничения тока на этих типах светодиодов.

Светодиод со встроенным резистором Крупный план

Итак, подключите светодиод со встроенным резистором к источнику питания и зажгите его! Мы протестировали эти типы светодиодов при напряжении 3,3 В, 5 В и 9 В.

Сверхяркий зеленый светодиод со встроенным резистором с питанием

Примечание: В техническом описании светодиодов со встроенным резистором указано, что рекомендуемое прямое напряжение составляет около 5 В. Тестирование одного на 5 В, он потребляет около 18 мА. Стресс-тестирование с 9V аккумулятор, он тянет около 30мА. Вероятно, это верхний предел входного напряжения. Использование более высокого напряжения может сократить срок службы светодиода. При напряжении около 16 В в наших стресс-тестах светодиод перегорел.

Корпуса для поверхностного монтажа (SMD)

Светодиоды для поверхностного монтажа представляют собой не столько определенный вид светодиодов, сколько тип корпуса. По мере того, как электроника становится все меньше и меньше, производители придумали, как втиснуть больше компонентов в меньшее пространство. Детали SMD (Surface Mount Device) представляют собой крошечные версии своих стандартных аналогов. Вот крупный план адресуемого светодиода WS2812B, упакованного в небольшой корпус 5050.

Адресный WS2812B Крупный план

SMD-светодиоды бывают нескольких размеров, от довольно больших до размеров меньше рисового зерна! Поскольку они такие маленькие и имеют подушечки вместо ножек, с ними не так просто работать, но если у вас мало места, они могут быть именно тем, что прописал доктор.

Пакет WS2812B-5050 Пакет APA102-2020
9Светодиоды 0008 SMD также облегчают и ускоряют установку большого количества светодиодов на печатные платы и полосы для машин . Вы, вероятно, не стали бы вручную припаивать все эти компоненты вручную.

Крупный план адресной светодиодной матрицы 8×32 (WS2812-5050) Адресная светодиодная лента 5M (APA102-5050) с питанием

High Power

Мощные светодиоды таких производителей, как Luxeon и CREE, невероятно яркие. Они ярче, чем суперяркие! Как правило, светодиод считается высокомощным, если он может рассеивать мощность 1 Вт или более. Это причудливые светодиоды, которые вы найдете в действительно хороших фонариках. Массивы из них можно построить даже для прожекторов и автомобильных фар. Поскольку через светодиод проходит так много энергии, для них часто требуются радиаторы. Радиатор — это, по сути, кусок теплопроводного металла с большой площадью поверхности, задачей которого является передача как можно большего количества отработанного тепла в окружающий воздух.

В конструкцию некоторых разделительных досок, таких как показанная ниже, может быть встроено некоторое рассеивание тепла.

Мощный RGB-светодиод Алюминиевая задняя панель для некоторого рассеивания тепла

Мощные светодиоды могут генерировать столько отработанного тепла, что могут повредить себя без надлежащего охлаждения. Не позволяйте термину «отработанное тепло» обмануть вас, эти устройства по-прежнему невероятно эффективны по сравнению с обычными лампочками. Для управления можно использовать драйвер светодиода постоянного тока.

Специальные светодиоды

Существуют даже светодиоды, излучающие свет за пределами обычного видимого спектра. Например, вы, вероятно, используете инфракрасные светодиоды каждый день. Они используются в таких вещах, как пульты от телевизора, для отправки небольших фрагментов информации в виде невидимого света! Они могут выглядеть как стандартные светодиоды, поэтому их будет трудно отличить от обычных светодиодов.

ИК-светодиод

На противоположном конце спектра также можно найти ультрафиолетовые светодиоды. Ультрафиолетовые светодиоды заставят некоторые материалы флуоресцировать, как черный свет! Они также используются для дезинфекции поверхностей, поскольку многие бактерии чувствительны к ультрафиолетовому излучению. Они также могут быть использованы для обнаружения подделок (купюры, кредитные карты, документы и т. д.), солнечных ожогов, список можно продолжить. Пожалуйста, надевайте защитные очки при использовании этих светодиодов.

УФ-светодиод Проверяем банкноту США

Другие светодиоды

Имея в вашем распоряжении такие причудливые светодиоды, нет оправдания тому, чтобы оставить что-либо неосвещенным. Однако, если ваша жажда знаний о светодиодах не утолена, тогда читайте дальше, и мы подробно рассмотрим светодиоды, цвет и силу света!

Углубление

Итак, вы закончили со светодиодами 101 и хотите большего? О, не волнуйтесь, у нас есть еще. Давайте начнем с науки о том, что заставляет светодиоды тикать… э-э… мигать. Мы уже упоминали, что светодиоды — это особый вид диодов, но давайте немного углубимся в то, что именно это означает:

То, что мы называем светодиодом, на самом деле представляет собой светодиод и упаковку вместе, но сам светодиод на самом деле крошечный! Это чип полупроводникового материала, легированный примесями, которые создают границу для носителей заряда. Когда ток течет в полупроводник, он перескакивает с одной стороны этой границы на другую, высвобождая при этом энергию. В большинстве диодов эта энергия уходит в виде тепла, но в светодиодах эта энергия рассеивается в виде света!

Длина волны света и, следовательно, цвет зависят от типа полупроводникового материала, из которого изготовлен диод. Это связано с тем, что структура энергетических зон полупроводников различается между материалами, поэтому фотоны излучаются с разными частотами. Вот таблица распространенных светодиодных полупроводников по частоте:

Усеченная таблица полупроводниковых материалов по цветам. Полная таблица доступна в статье Википедии для «LED»

В то время как длина волны света зависит от ширины запрещенной зоны полупроводника, интенсивность зависит от количества энергии, проходящей через диод. Мы немного говорили об интенсивности света в предыдущем разделе, но это больше, чем просто числовое значение того, насколько ярко что-то выглядит.

Единица измерения силы света называется кандела, хотя, когда вы говорите об интенсивности одного светодиода, вы обычно находитесь в диапазоне милликандела. Что интересно в этой единице, так это то, что на самом деле это не мера количества световой энергии, а фактическая мера «яркости». Это достигается путем взятия мощности, излучаемой в определенном направлении, и взвешивания этого числа с помощью функции светимости света. Человеческий глаз более чувствителен к некоторым длинам волн света, чем к другим, и функция светимости представляет собой стандартизированную модель, учитывающую эту чувствительность.

Сила света светодиодов может составлять от десятков до десятков тысяч милликандела. Индикатор питания на вашем телевизоре, вероятно, составляет около 100 мкд, тогда как у хорошего фонарика может быть 20 000 мкд. Смотреть прямо на что-то более яркое, чем несколько тысяч милликандел, может быть болезненно; не пытайтесь.

Прямое падение напряжения

О, я также обещал, что мы поговорим о концепции прямого падения напряжения. Помните, когда мы смотрели техническое описание, я упомянул, что прямое напряжение всех ваших светодиодов, сложенных вместе, не может превышать напряжение вашей системы? Это связано с тем, что каждый компонент в вашей схеме должен иметь

разделяет напряжение, и количество напряжения, которое каждая часть использует вместе, всегда будет равно доступному количеству. Это называется законом напряжения Кирхгофа. Таким образом, если у вас есть источник питания 5 В, и каждый из ваших светодиодов имеет прямое падение напряжения 2,4 В, вы не сможете питать более двух одновременно.

Законы Кирхгофа также пригодятся, когда вы хотите приблизить напряжение на данной части на основе прямого напряжения других частей. Например, в примере, который я только что привел, есть источник питания 5 В и 2 светодиода с прямым падением напряжения 2,4 В каждый. Конечно, мы хотели бы включить токоограничивающий резистор, верно? Как узнать напряжение на этом резисторе? Это просто:

5 (напряжение системы) = 2,4 (светодиод 1) + 2,4 (светодиод 2) + резистор

5 = 4,8 + Резистор

Резистор = 5 — 4,8

Резистор = 0,2

Итак, на резисторе 0,2 В! Это упрощенный пример, и это не всегда так просто, но, надеюсь, это даст вам представление о важности прямого падения напряжения. Используя значение напряжения, которое вы получаете из законов Кирхгофа, вы также можете делать такие вещи, как определение тока через компонент с помощью закона Ома. короче вы хотите, чтобы напряжение вашей системы было равно ожидаемому прямому напряжению компонентов вашей комбинированной схемы.

Расчет токоограничивающих резисторов

Если вам необходимо рассчитать точное значение токоограничивающего резистора, включенного последовательно со светодиодом, ознакомьтесь с одним из примеров приложений в руководстве по резисторам для получения дополнительной информации.

Ресурсы и продолжение

Вы сделали это! Вы знаете почти все… о светодиодах. Теперь иди и ставь светодиоды на все, что угодно! А теперь… драматическая реконструкция светодиода без токоограничивающего резистора, перегруженного и перегоревшего:

Да… не впечатляет.

Если вы хотите узнать больше о некоторых темах, связанных со светодиодами, посетите эти другие учебные пособия:

Легкий

Light — полезный инструмент для инженера-электрика. Понимание того, как свет связан с электроникой, является фундаментальным навыком для многих проектов.

Избранное Любимый 25

ИК-связь

В этом руководстве объясняется, как работает обычная инфракрасная (ИК) связь, а также показано, как настроить простой ИК-передатчик и приемник с помощью Arduino.

Избранное Любимый 42

Цилиндр Das Blinken

Цилиндр, украшенный светодиодными лентами, станет отличным свадебным подарком.

Избранное Любимый 1

Как делают светодиоды

Мы совершаем экскурсию по производителю светодиодов и узнаем, как производятся светодиоды PTH 5 мм для SparkFun.

Избранное Любимый 18

Руководство по подключению неадресуемой светодиодной ленты RGB

Добавьте цвета своим проектам с помощью неадресуемых светодиодных лент! Они идеально подходят, если вы хотите управлять и запитывать всю полосу одним цветом для вашего реквизита, автомобиля, аквариума, комнаты, стены или, возможно, под освещением шкафа в вашем доме.

Избранное Любимый 2

SparkFun gator:Руководство по подключению частиц

Gator:particle — это монитор сердечного ритма I2C и пульсоксиметр, который можно использовать в качестве датчика частиц. Это руководство поможет вам начать использовать gator:particle с платформой micro:bit.

Избранное Любимый 0

Basic Character LCD Руководство по подключению

Жидкокристаллические дисплеи (ЖК-дисплеи) — отличный способ вывести строку слов или данные датчика на дисплей для визуальной обратной связи. В этом уроке мы узнаем о ЖК-дисплеях, как напечатать строку слов на ЖК-дисплее с базовыми символами 16×2 и создать собственные символы.

Избранное Любимый 16

 

Хотите узнать больше о светодиодах?

См. нашу страницу LED , где вы найдете все, что вам нужно знать, чтобы начать использовать эти компоненты в своем проекте.

Отведи меня туда!

 

Или посмотрите некоторые из следующих сообщений в блоге:

Гонка на выживание: светодиодные лампы и DFM

11 мая 2015 г.

Избранное Любимый 7

T³: Приключения с УФ-светодиодами, фотоинициаторами и гель-лаком для ногтей

19 апреля 2016 г.

Избранное Любимый 0

T³: Использование светодиодов в качестве датчиков освещенности

9 августа 2016 г.

Избранное Любимый 2

Распечатанные на 3D-принтере руки-помощники

16 апреля 2018 г.

Избранное Любимый 0

ATP: Схема со светодиодами

2 июля 2018 г.

Избранное Любимый 0

Математическое выцветание

26 декабря 2018 г.

Избранное Любимый 4

Светодиодный трековый светильник и прожектор – Идеи своими руками

Создавать трековые светильники и прожекторы, кажется, моя навязчивая идея. Я построил свой первый в школьные годы или около того, и на этот раз мой проект думал о простых мощных светодиодных головках с несколькими интересными приложениями.

Светодиодный прожектор переменного тока 230 В

Во-первых, обратите внимание, что окончательный вариант проекта «Сделай сам» очень требователен к тому, какой тип осветительной головки вы используете, так как я собираюсь поделиться некоторыми идеями о светодиодных головках здесь, в этом посте. Что ж, давайте начнем с довольно дешевого, но элегантного светодиодного прожектора от Philips. Наверняка некоторые из моих читателей спросят, почему я не начал с примечания по строительству светодиодного трекового светильника или прожектора «сделай сам». Причина проста. Хотя в электронике плотного коммерческого дизайна особо нечего улучшать, мы можем узнать кое-что полезное, проведя глубокий анализ. Ладно, готовься снимать крышку!

«Круглый прожектор Philips 2 Вт Astra», доступный в различных цветах (красный, зеленый, синий, желтый, белый), поставляется с собственным драйвером/балластом светодиода. Таким образом, вы можете сразу же использовать его из коробки в качестве прожектора переменного тока 240 В или потолочного светильника, или в качестве трекового светильника, но только после некоторых изменений. Максимальный выходной ток драйвера составляет 150 мА при 6,5 В постоянного тока, а максимальная выходная мощность составляет 1 Вт. Максимальная входная мощность 2 Вт.

DC 3,7 В/5 В Сборка

Все в порядке. Но если вы пытаетесь создать версию с питанием от батареи, вы можете отказаться от громоздкого блока драйверов светодиодов. Если это так, просто попробуйте один последовательный резистор (балластный резистор) для питания одного звездообразного белого светодиода мощностью 1 Вт от литий-ионной или LiPo батареи 18650 1S. Специальная схема драйвера светодиода постоянного тока не очень важна для простого приложения. Кроме того, вы можете запустить его и от источника питания USB, изменив номинал последовательного резистора (см. ниже).

Светодиоды с отражателями

Как и все остальные, я уверен, что вы где-то в Интернете находили маленькие белые светодиоды с отражателями. На самом деле они созданы для фонариков/куполов с батарейным питанием.

Вы можете недорого взять коробку подходящего размера и использовать ее для изготовления собственных светодиодных прожекторов или трековых светильников. Даже ленивый поиск по фразе «COB LED с квадратным/прямоугольным отверстием» выдаст вам множество деталей. То, что я получил из китайского интернет-магазина, представляет собой смешанный пакет узконаправленных светодиодных головок, предназначенных для работы от литий-ионной батареи 1S (3,7–4,2 В) (см. Ниже). Было замечено, что максимальное потребление тока осветительной головкой в ​​руке составляет примерно 330 мА при питании от полностью заряженного литий-ионного аккумулятора 1S. Балластный резистор представляет собой параллельную комбинацию двух предварительно припаянных чип-резисторов 3,3 Ом.

Так как я намеревался подключить его к стандартной сетевой розетке USB, в мою окончательную установку был включен дополнительный выпрямительный диод общего назначения, как показано на схеме подключения ниже. Хороший трюк, а?

Мощные светодиодные прожекторы/трековые светильники

Светодиодов мощностью от 1 Вт до 3 Вт достаточно для большинства прожекторов и трековых светильников, хотя обычно доступны мощные светодиодные трековые светильники мощностью до 20 Вт (см. ниже). Теперь стоит отметить, что трековое освещение — это метод освещения, при котором светильники крепятся в любом месте на непрерывном рельсовом устройстве, содержащем электрические проводники. Трековое освещение обычно комбинируют с направленными светильниками с отражателями, например прожекторами. Эти лампы могут работать как при сетевом напряжении переменного тока, так и при более низком напряжении постоянного тока.

Вы можете перейти на эту страницу Википедии, чтобы узнать больше о трековом освещении и трековых светильниках https://en.wikipedia.org/wiki/Track_lighting

Mighty DC LED Drivers

Существует несколько проверенных методов управления автомобилем. мощные светодиоды, поэтому я расскажу о некоторых из них в следующих разделах.

Метод балластного резистора (последовательно соединенного резистора) на сегодняшний день является наиболее широко используемым методом для управления мощными светодиодами. В любом случае, я не рекомендую этот простейший способ для мощных светодиодов, так как он не работает эффективно — есть много компромиссов!

Переходим к следующему методу. Ниже приведена грубая схема очень простого и довольно распространенного источника постоянного тока для питания мощных светодиодов.

Здесь управляющий ток протекает через светодиод, T1 и R1. Когда через R1 протекает слишком большой ток, T2 начнет включаться, чтобы выключить T1. Выключение T1 уменьшит ток, протекающий через светодиод и резистор R1. Таким образом, установка непрерывно контролирует ток светодиода и постоянно поддерживает его точно на заданном уровне.

Просто пример расчета: для тока возбуждения 650 мА ближайшее стандартное значение для R1 составляет 1 Ом ( Vbe/If_LED = 0,7/0,65 = 1,07 ), а его номинальная мощность должна составлять 1 Вт. Обратите внимание, что текущая уставка несколько чувствительна к температуре. В Интернете уже есть много важных руководств, объясняющих этот трюк. Немного поиска в Google поможет вам найти более сложные темы.

Another Easy Climb

Для светодиода мощностью 20 Вт наиболее разумным решением является использование одного готового модуля драйвера светодиода мощностью 20 Вт, разработанного специально для этого конкретного применения. Я попробовал один из этих довольно крутых модулей (есть так много вариантов), купленный в китайском интернет-магазине электроники, и остался им вполне доволен.

Ключевым компонентом модуля является XL6005, который представляет собой 180KHz 60V 4A импульсный импульсный светодиодный драйвер постоянного тока IC от XLSEMI (www.xlsemi.com). Этот чип драйвера постоянного тока для светодиодов постоянного тока с фиксированной частотой ШИМ может управлять светодиодными блоками серии 1 Вт / 3 Вт / 5 Вт с превосходной регулировкой линии и нагрузки. Для получения полной информации о приложении см. его официальное техническое описание http://www.xlsemi.com/datasheet/XL6005%20datasheet.pdf.

Это основные данные типичного светодиода высокой мощности мощностью 20 Вт, который обычно продается продавцами Amazon и eBay:

Предостережение от неподходящей практики: обратите внимание, что стандартный светодиод мощностью 20 Вт, установленный на алюминиевой печатной плате с металлическим сердечником (MCPCB), может зажигаться напрямую, но я не рекомендую включать его более пяти секунд без соответствующего нагрева. механизм диссипации. Поэтому вы должны использовать правильный блок радиатора и вентилятора со светодиодом мощностью 20 Вт!

Следующий на очереди…

Надеюсь, теперь у вас есть несколько основных идей для создания элегантных световых головок для ваших собственных мощных светодиодных прожекторов переменного или постоянного тока и трековых светильников. Что теперь? Ничего, просто следуйте одной из вышеупомянутых идей и постройте несколько дома!

Возможно, вы не захотите использовать в своих проектах настроенные китайские драйверы светодиодов. Не волнуйтесь, я покажу вам, как подключить свои собственные драйверы светодиодов постоянного тока, взломав очень дешевые и простые в использовании модули импульсного регулятора постоянного тока. Поскольку эксперимент находится в процессе, вам, возможно, придется некоторое время следить за обновлениями, чтобы увидеть статью «Сделай сам» здесь. Я бы, конечно, посвятил немного больше времени тому, чтобы сделать его лучше и красивее. Давайте посмотрим!

Постскриптум

Я уже упоминал о Philips Astra Spotlight.

Related Post