Можно ли получить электрический ток бесплатно
Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.Известны два способа: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получение даже мизерных его количеств.
Добыча из воздуха
Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.
Некоторые способы следующие:
- грозовые батареи используют свойство электрического потенциала накапливаться;
- ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
- ионизатор (люстра Чижевского) — популярный бытовой прибор;
- генератор TPU (тороидального) электричества Стивена Марка;
- генератор Капанадзе — бестопливный энергетический источник.
Рассмотрим подробно некоторые из устройств.
Ветрогенераторы
Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.
[advice]Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.[/advice]
Грозовые батареи
Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.
Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.
[warning]Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.[/warning]
Тороидальный генератор С. Марка
Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.Генератор TPU (тороидальный) может питать бытовые приборы.
Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.
Генератор Капанадзе
Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.
Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.
Добыча из Земли
Невзирая на то, что запас энергии Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.
Гальванический способ (с двумя стержнями)
Известен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).Между стержнями из разных металлов в электролите появляется разность потенциалов.
Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствором соли (электролитом). Это способ получения некоторого количество бесплатного электричества.
От заземления
Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.
[advice]Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний. Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить данную энергию, токовый удар придется по всему зданию.[/advice]
Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи. (От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется).
Другие способы
Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы. А именно: даром его могут дать самодельные пирамиды.Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть — пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.
Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее — дешевая) электрическая энергия, ток.
Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.
Однако, ведутся серьезные научные изыскания в области получения малого электричества из продуктов жизнедеятельности растений, переходящих в землю.
Такие источники, дающие вечное электричество, то есть — работающие с восполнением энергии, используют в системах контроля за влажность. Судя по тому, что эксперименты проводятся на горшечных растениях, подобные приборы можно делать и испытывать самостоятельно.
Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен МВт электроэнергии также, как это делается посредством солнца и ветра.
На практике своими руками жители районов с вулканической деятельностью могут самостоятельно сделать, например, геотермальный насос для отопления. А тепло известными способами можно превратить в электричество.Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышающихся ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и помогают получать энергию даже в значительных масштабах.
Изобретатели и ученые разрабатывают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра. Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.
Во всяком случае, человек не имеет права значительно вмешиваться в природу, пытаясь разрядить этот запас энергии, не изучив процесс досконально с учетом последствий.
Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:
Бесплатное электричество из воздуха своими руками: работающие схемы и проекты
Получение электричества из воздуха может показаться чем-то из области фантастики. Действительно, на столь смелое заявление оппоненты могут возразить, что в окружающей среде нет мощного источника электрической энергии, и единственное, что имеет право на существование, это солнечные батареи и ветрогенераторы. Однако их мнение не вполне соответствует действительности. Явление статического электричества в воздухе, знакомое практически каждому человеку, означает присутствие электроэнергии в пространстве в незначительном количестве. Научившись накапливать ее и использовать для работы бытовых энергозависимых приборов, человечество совершит прорыв в истории науки и заодно получит в свое распоряжение тысячи киловатт дешевых энергоресурсов с неисчерпаемым запасом.
Впервые попытку получить бесплатное электричество из воздуха своими руками предпринял знаменитый ученый-физик Никола Тесла.
Опыты Тесла повторили многие специалисты и частные лица — любители из разных стран мира. Чьи-то опыты оказались бесплодными, но некоторым удалось приблизиться к ответу на вопрос, как получать электричество из воздуха как Тесла. В числе разработок – проект изобретателя Стивена Марка. Сконструированный им тороидальный генератор способен накапливать и удерживать значительное количество энергии, которого вполне достаточно для питания слабых источников света и бытовой техники. Работая без дополнительной подзарядки в течение длительного времени, генератор электричества из воздуха стабильно подавал бесплатную энергию на подключенные устройства-потребители, не оказывая негативного влияния на их техническое состояние и работоспособность.
Электричество из воздуха: схемы, прошедшие проверку качества
Сегодня научные журналы и тематические сайты предлагают немало схем и чертежей для электричества из воздуха, пригодных для реализации в домашних условиях. Тем более что есть благоприятные условия для воплощения подобных замыслов. Разветвленная сеть линий электропередач дополнительно насыщает воздух ионами в огромном количестве. И остается только научиться аккумулировать рассеянную энергию и использовать ее для бытовых нужд.
Первый вариант – земля в качестве основания и металлическая пластина, играющая роль антенны. Здесь нет необходимости использовать накопительные или преобразовательные устройства. Энергетический потенциал между землей и антенной может увеличиваться по мере накопления заряда. Действие такой схемы аналогично действию молнии: при накоплении достаточного количества электричества возникает разряд и видимое искрение.
В числе достоинств предлагаемого решения:
- Доступность реализации в домашних условиях;
- Минимальную себестоимость благодаря отказу от покупки дорогостоящих устройств и дополнительных приборов. А металлическая пластина с токопроводящими свойствами легко найдется в запасах у любого домашнего мастера.
Однако в предложенном проекте есть и недостатки. О первом сказано выше: это невозможность рассчитать силу заряда хотя бы приблизительно. И еще один момент, касающийся вопросов безопасности: открытый контур способен притягивать грозовой разряд, убийственная мощность которого опасна для жизни.
Схема получения электричества из воздуха по проекту Стивена Марка
Генератор Стивена Марка также доступен для реализации в бытовых условиях. Его работоспособность подтверждает патентование технологии, которой предрекал большое будущее ее изобретатель. Принцип прост: внутри кольцевой конструкции устройства токи и магнитные вихри резонируют, приводя к появлению разряда сравнительно высокой мощности.
Схема получения электричества из воздуха выглядит следующим образом:
- Основание прибора Марка – отрезок фанеры, резина или полиуретан, на которые будут уложены две коллекторные катушки и четыре катушки управления. Последние должны соответствовать следующим параметрам: внутренний и наружный диаметр кольца соответственно 18 и 23 см, ширина 2,5 см, толщина 0,5 см.
- Внутренняя коллекторная катушка наматывается с применением медного провода, в идеале намотка должна быть в три витка.
- Управляющие катушки наматываются одножильными проводами плоской намоткой с зазором между витками не более 15 мм. Для монтажа последней катушки применяют изолированный медный провод, который располагают по всей площади основания.
- Устанавливается конденсатор на 10 микрофарад.
- Выводы катушек соединяются. Для питания подбираются транзисторы, параметры которых учитывают тип проводов и прочие особенности конструкции.
Устройство готово к тестированию и первым пробным подключениям к маломощному энергозависимому устройству.
Несколько полезных советов по технике безопасности
- Непредсказуемость статического электричества требует внимательного конструирования с учетом полярности, правильности подключения и изоляции устройства;
- Испытания лучше проводить в помещении, откуда своевременно удалены легковоспламеняющиеся и взрывоопасные устройства.
Для тестирования лучше подобрать «ненужный» прибор, порча которого вследствие допущенных ошибок не принесет разочарования. И не поленитесь проверить готовый генератор несколько раз, прежде чем испытывать его работоспособность.
Бесплатное электричество — лучшие идеи и советы по их реализации (75 фото устройств)
Что такое альтернативная энергетика? Современный мир предлагает способы создания бесплатного электричества. Как его сделать своими руками?
Краткое содержимое статьи:
Альтернатива
В 1901 году знаменитый, гениальный учёный Николай Тесла сконструировал огромную башню Ворденклиф в Нью-Йорке. Компания JP Morgan взяла на себя финансовую часть проекта. Тесла хотел осуществить бесплатную радиосвязь и снабдить человечество бесплатным электричеством. Морган же просто ожидал беспроводную международную связь.
Идея бесплатного электричества привела в ужас промышленные и финансовые “Тузы”. Желающих революций в мировой экономике не оказалось, все держались за сверхприбыли. Поэтому проект свернули.
Так что же построил Тесла? Как он собирался сделать бесплатное электричество? В XXI веке всё большую поддержку получает идея альтернативной энергетики, работающей на других источниках. Своеобразным оппонентом нефти, углю, газу здесь выступают возобновляемые ресурсы Земли и других планет.
Из чего можно получить бесплатное электричество? Солнечный свет, энергия ветра, земли, использование приливов и отливов, мускульная энергия человеческого тела могут изменить будущее планеты. Уйдут в прошлое трубопроводы, саркофаги реакторов. Многие государства смогут освободить свою экономику от необходимости закупать дорогостоящие источники электричества.
Поиску альтернативных источников энергии, которые легко возобновляются, уделяют большое внимание. В последние десятилетия человечество волнуют проблемы чистоты экологии, экономичности ресурсов.
Технология
Чуть ниже рассматриваются варианты получения бесплатного электричества.
Ветряная электростанция. Голландия предлагает построить ветряную ферму огромных размеров в Северном море, и искусственный, оснащённый необходимым оборудованием остров, который возьмёт на себя роль энергетического хаба, распределяя электричество между 5 государствами.
Саудовская Аравия предложила создать турбины в виде “бумажных змеев”, и расположить их в воздухе, а не на земле. Несколько стран имеют собственные поля с ветряными генераторами.
Солнечная электростанция. В продаже есть крыши, состоящие из солнечных панелей, а также панели из фотогальванического стекла, которыми можно облицовывать наружные стены домов. Американские учёные выпустили солнечные батареи в форме прозрачных плиток, которыми можно застеклить окна, чтобы вырабатывать электричество для дома.
Грозовая батарея – накопитель энергии от разрядов в атмосфере. Молнии перенаправляются в электросеть.
Тороидальный генератор TPU состоит из 3 катушек. Магнитный вихрь и резонансные частоты являются причиной появления тока. Изобрёл его С.Марк.
Приливные электростанции – работа зависит от приливов и отливов, положения Земли и Луны.
Тепловая электростанция – в качестве ресурса используются высокотемпературные грунтовые воды.
Сила человеческих мускулов – люди также вырабатывают энергию при движении, что можно использовать.
Термоядерный синтез – процессом можно управлять. Синтезируются более тяжёлые ядра из более лёгких.
Способ не применяется, поскольку очень опасен.Сам себе мастер
Бесплатное электричество можно сделать своими руками. Существует немало методов, чтобы соорудить устройства, вырабатывающие энергию. Для этого нужно лишь немного знаний и умений. Например:
Сделать элемент Пельтье – пластина, термоэлектрический преобразователь. Тепло получают от горящего источника, охлаждение производится теплообменником. Составляющие сделаны из неодинаковых металлов.
Соорудить генератор, собирающий радиоволны – парные конденсаторы, электролитические, плёночные, диоды маленькой мощности. Изолированный кабель 15 м применяют в роли антенны. Заземляющий провод крепится к газовой, водопроводной трубе.
Сконструировать термоэлектрический генератор- потребуются стабилизатор напряжения, корпус, охлаждающие радиаторы, термопаста, нагревающие пластины Пельтье.
Построить грозовую батарею – металлическая антенна и заземление. Потенциал накапливается между элементами устройства. Метод опасен, так как притягиваются молнии, чьё напряжение достигает 2000 Вольт.
Гальванический метод – медный и алюминиевый стержни вставляются в землю, на глубину 0,5 м, площадь между ними обрабатывают солевым раствором.
Что ещё?
Среди обычных, можно встретить и довольно необычные способы получения электричества. В последнее время идёт интенсивная работа учёных всего мира по развитию альтернативной энергетики. Мир ищет возможности для более широкого её использования.
Чуть ниже приводится небольшой обзор лучших способов и идей:
Термический генератор – преобразовывает тепловую энергию в электрическую. Встроен в отопительно-варочные печи.
Пьезоэлектрический генератор – работает на кинетической энергии. Внедряют в Танцполы, турникеты, тренажёры.
Наногенератор – применяется энергия колебаний человеческого тела при движении. Процесс отличается мгновенностью. Учёные работают над совмещением работы наногенератора и солнечной батареи.
Безтопливный генератор Капанадзе – работает на постоянных магнитах в роторе и бифлярных катушках в статоре. Мощность 1-10 кВт. За основу взято одно из изобретений Н.Тесла, но многие не верят в этот принцип. Ещё по одной из версий, настоящая технология аппарата удерживается в большом секрете.
Экспериментальные установки, которые работают на эфире – электро-магнитное поле. Пока ещё идут поиски, проверяются гипотезы, проводятся эксперименты.
Учёные подсчитали, что природных запасов, используемых в современной энергетике, может хватить ещё на 60 лет. Разработками в данной области занимаются лучшие умы. В Дании население пользуется ветровой энергетикой, составляющей 25%.
В России планируются проекты, по использованию восстанавливаемых источников в энергетической системе на 10%, а в Австралии на 8%. В Швейцарии большинство проголосовало за полный переход на альтернативную энергетику. Мир голосует за!
Фото методов получения бесплатного электричества
Как сделать бесплатное электричество своими руками — Про дизайн и ремонт частного дома
Статическое электричество из воздуха на службе вашего быта
Дата публикации: 11 октября 2019
Получение электричества из воздуха может показаться чем-то из области фантастики. Действительно, на столь смелое заявление оппоненты могут возразить, что в окружающей среде нет мощного источника электрической энергии, и единственное, что имеет право на существование, это солнечные батареи и ветрогенераторы. Однако их мнение не вполне соответствует действительности. Явление статического электричества в воздухе, знакомое практически каждому человеку, означает присутствие электроэнергии в пространстве в незначительном количестве. Научившись накапливать ее и использовать для работы бытовых энергозависимых приборов, человечество совершит прорыв в истории науки и заодно получит в свое распоряжение тысячи киловатт дешевых энергоресурсов с неисчерпаемым запасом.
Впервые попытку получить бесплатное электричество из воздуха своими руками предпринял знаменитый ученый-физик Никола Тесла. Он длительное время занимался исследованиями природы статического электричества и убедился в возможности его накопления. Более того, Тесла сумел создать прибор, «собирающий» статику из воздуха и хранящий накопленный заряд. К сожалению, это устройство не сохранилось, зато удалось восстановить и расшифровать рабочие записи и результаты исследований ученого. На их основе физикам удалось создать аналогичный прибор, способный получать электроэнергию из окружающей среды.
Опыты Тесла повторили многие специалисты и частные лица — любители из разных стран мира. Чьи-то опыты оказались бесплодными, но некоторым удалось приблизиться к ответу на вопрос, как получать электричество из воздуха как Тесла. В числе разработок – проект изобретателя Стивена Марка. Сконструированный им тороидальный генератор способен накапливать и удерживать значительное количество энергии, которого вполне достаточно для питания слабых источников света и бытовой техники. Работая без дополнительной подзарядки в течение длительного времени, генератор электричества из воздуха стабильно подавал бесплатную энергию на подключенные устройства-потребители, не оказывая негативного влияния на их техническое состояние и работоспособность.
Электричество из воздуха: схемы, прошедшие проверку качества
Сегодня научные журналы и тематические сайты предлагают немало схем и чертежей для электричества из воздуха, пригодных для реализации в домашних условиях. Тем более что есть благоприятные условия для воплощения подобных замыслов. Разветвленная сеть линий электропередач дополнительно насыщает воздух ионами в огромном количестве. И остается только научиться аккумулировать рассеянную энергию и использовать ее для бытовых нужд.
Первый вариант – земля в качестве основания и металлическая пластина, играющая роль антенны. Здесь нет необходимости использовать накопительные или преобразовательные устройства. Энергетический потенциал между землей и антенной может увеличиваться по мере накопления заряда. Действие такой схемы аналогично действию молнии: при накоплении достаточного количества электричества возникает разряд и видимое искрение. Единственная сложность – предсказать его величину в следующий момент времени невозможно. А пустить для бытовых устройств крупный разряд – значит сжечь их в первую же секунду.
В числе достоинств предлагаемого решения:
- Доступность реализации в домашних условиях;
- Минимальную себестоимость благодаря отказу от покупки дорогостоящих устройств и дополнительных приборов. А металлическая пластина с токопроводящими свойствами легко найдется в запасах у любого домашнего мастера.
Однако в предложенном проекте есть и недостатки. О первом сказано выше: это невозможность рассчитать силу заряда хотя бы приблизительно. И еще один момент, касающийся вопросов безопасности: открытый контур способен притягивать грозовой разряд, убийственная мощность которого опасна для жизни.
Схема получения электричества из воздуха по проекту Стивена Марка
Генератор Стивена Марка также доступен для реализации в бытовых условиях. Его работоспособность подтверждает патентование технологии, которой предрекал большое будущее ее изобретатель. Принцип прост: внутри кольцевой конструкции устройства токи и магнитные вихри резонируют, приводя к появлению разряда сравнительно высокой мощности.
Схема получения электричества из воздуха выглядит следующим образом:
- Основание прибора Марка – отрезок фанеры, резина или полиуретан, на которые будут уложены две коллекторные катушки и четыре катушки управления. Последние должны соответствовать следующим параметрам: внутренний и наружный диаметр кольца соответственно 18 и 23 см, ширина 2,5 см, толщина 0,5 см.
- Внутренняя коллекторная катушка наматывается с применением медного провода, в идеале намотка должна быть в три витка.
- Управляющие катушки наматываются одножильными проводами плоской намоткой с зазором между витками не более 15 мм. Для монтажа последней катушки применяют изолированный медный провод, который располагают по всей площади основания.
- Устанавливается конденсатор на 10 микрофарад.
- Выводы катушек соединяются. Для питания подбираются транзисторы, параметры которых учитывают тип проводов и прочие особенности конструкции.
Устройство готово к тестированию и первым пробным подключениям к маломощному энергозависимому устройству.
Несколько полезных советов по технике безопасности
- Непредсказуемость статического электричества требует внимательного конструирования с учетом полярности, правильности подключения и изоляции устройства;
- Испытания лучше проводить в помещении, откуда своевременно удалены легковоспламеняющиеся и взрывоопасные устройства.
Для тестирования лучше подобрать «ненужный» прибор, порча которого вследствие допущенных ошибок не принесет разочарования. И не поленитесь проверить готовый генератор несколько раз, прежде чем испытывать его работоспособность.
- Новости альтернативной энергетики, 1-5 февраля 2015 года
- Коста-Рика прожила 75 дней на возобновляемой энергии
- В Европе разрабатывают хранилища тепла
- Новости альтернативной энергетики от 2.02.2016
Вам нужно войти, чтобы оставить комментарий.
Бесплатное электричество: как получить электрический ток из земли и воздуха своими руками
Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.
Известны два способа: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получение даже мизерных его количеств.
Добыча из воздуха
Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.
В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.
Некоторые способы следующие:
- грозовые батареи используют свойство электрического потенциала накапливаться;
- ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
- ионизатор (люстра Чижевского) — популярный бытовой прибор;
- генератор TPU (тороидального) электричества Стивена Марка;
- генератор Капанадзе — бестопливный энергетический источник.
Рассмотрим подробно некоторые из устройств.
Ветрогенераторы
Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.
Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.
[advice]Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.[/advice]
Грозовые батареи
Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.
Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.
Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.
[warning]Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.[/warning]
Тороидальный генератор С. Марка
Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.
Генератор TPU (тороидальный) может питать бытовые приборы.
Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.
Генератор Капанадзе
Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.
Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.
Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.
Добыча из Земли
Невзирая на то, что запас энергии Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.
Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.
Гальванический способ (с двумя стержнями)
Известен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).
Между стержнями из разных металлов в электролите появляется разность потенциалов.
Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствором соли (электролитом). Это способ получения некоторого количество бесплатного электричества.
От заземления
Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.
Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.
[advice]Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний. Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить данную энергию, токовый удар придется по всему зданию. [/advice]
Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи. (От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется).
Другие способы
Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы. А именно: даром его могут дать самодельные пирамиды.
Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть — пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.
Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее — дешевая) электрическая энергия, ток.
Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.
Однако, ведутся серьезные научные изыскания в области получения малого электричества из продуктов жизнедеятельности растений, переходящих в землю.
Такие источники, дающие вечное электричество, то есть — работающие с восполнением энергии, используют в системах контроля за влажность. Судя по тому, что эксперименты проводятся на горшечных растениях, подобные приборы можно делать и испытывать самостоятельно.
Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен МВт электроэнергии также, как это делается посредством солнца и ветра.
На практике своими руками жители районов с вулканической деятельностью могут самостоятельно сделать, например, геотермальный насос для отопления. А тепло известными способами можно превратить в электричество.
Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышающихся ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и помогают получать энергию даже в значительных масштабах.
Изобретатели и ученые разрабатывают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра. Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.
Во всяком случае, человек не имеет права значительно вмешиваться в природу, пытаясь разрядить этот запас энергии, не изучив процесс досконально с учетом последствий.
Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:
4 способа получить электричество из земли своими руками
Необходимость постоянного сжигания топлива для получения электроэнергии приводит к поискам способов удешевления этого процесса, а порой и создания теорий о возможности выработки халявного электричества. Подобные идеи не новы, их выдвигали еще знаменитые умы прошлого, стоявшие на заре зарождения массового использования электрических приборов.
Поэтому современные генераторы свободной энергии уже никого не удивляют, бесплатную электроэнергию предлагают получать самыми невероятными способами. Сегодня мы рассмотрим такой способ, как электричество из земли, насколько это реально и какие теории существуют в целом.
Мифы и реальность
Современная наука смогла доказать наличие собственного электромагнитного поля вокруг планеты. Оно не только создает естественные колебания в атмосфере Земли, но и призвано защищать все человечество от воздействия солнечного излучения, пыли и других мелких частиц, которые могли бы попасть из космоса. С теоретической точки зрения, если разместить один электрод на поверхности грунта, а второй поднять вверх на 500 м, то между ними получится разность потенциалов около 80 В. Если пропорционально увеличить расстояние до 1000 м, то и уровень напряжения должен увеличиться в два раза.
Однако на практике все получается далеко на так складно:
- Во-первых, электроды должны иметь достаточно большую площадь, из-за чего они будут обладать парусностью и возникнут сложности с их массой и фиксацией на высоте.
- Во-вторых, электромагнитное состояние поля земли непостоянно, поэтому оно во многом зависит от различных факторов и его распределение в пространстве также неравномерно.
- В-третьих, верхний электрод будет главным претендентом на притяжение разрядов атмосферного электричества, что приведет к перенапряжению в генераторе.
Тем не менее, определенные опыты получения бесплатного электричества все же существуют, но их практическая реализация носит скорее экспериментальный, чем предметный характер.
Что можно попробовать сделать?
Но следует быть осторожным, так как некоторые из предложенных вариантов созданы исключительно в качестве коммерческой рекламы и не представляют пользы даже с теоретической точки зрения. Такие способы предназначены для продажи нерабочих устройств доверчивым соискателям бесплатного напряжения.
Однако, есть эксперименты, позволяющие извлечь электричество, пускай и относительно малого вольтажа. Среди существующих способов получения электричества из земли мы рассмотрим несколько действительно рабочих вариантов.
Схема по Белоусову
Название метода произошло от фамилии ученного, предложившего такой способ получения электричества из земли. Для этого используется двойное пассивное заземление без каких-либо активаторов, два конденсатора и катушки индуктивности. Схема Белоусова приведена на рисунке ниже:
Рис. 1. Схема получения электричества по Белоусову
Извлечение электричества из земли будет происходить по такому принципу:
- Через цепь двух заземлений постоянно пропускаются высокочастотные разряды, присутствующие в грунте. Но их будет отсеивать индуктивная составляющая первой катушки схемы Тр.1.
- Конденсаторы в схеме подключаются положительными пластинами друг к другу, важно соблюдать эту последовательность, иначе накопление электричества, как в единой емкости не произойдет.
- Ко второй катушке подключается лампочка, которая при наличии электричества покажет, что вам удалось добывать ток. Это своеобразная нагрузка, которую вы можете заменить на любой прибор.
Из земли и нулевого провода
Этот способ получения электричества из земли основан на том, что нулевой проводник в системах с глухозаземленной нейтралью у частного потребителя имеет значительное удаление от контура подстанции или КТП. Изначально проверьте, существует ли разность потенциалов между нулевым проводом и контуром заземления. Как правило, вольтметр покажет разность потенциалов в 10 – 20В. Это не большая разность потенциалов, но ее также можно использовать. Тем более что его можно запросто повысить при помощи обычного трансформатора до нужного номинала.
Рис. 2. Между нулем и землей
Чтобы добывать электричество вам понадобится обзавестись собственным контуром заземления, если такового еще нет на вашем участке. Более детальную информацию о процессе изготовления вы можете почерпнуть из соответствующей статьи на сайте — https://www. asutpp.ru/kontur-zazemleniya.html. Заметьте, несмотря на использование системы центрального электроснабжения, приборы учета не будут принимать в учет это напряжение, поэтому его можно считать бесплатным.
Стержни из цинка и меди (гальванический способ)
В таком методе получения электричества из земли используется тот же способ, что и в обычной батарейке. Здесь источником электроэнергии выступает химическая реакция, которая возникает при взаимодействии металлических электродов с природным электролитом. Однако мощность этого природного генератора электричества и разность потенциалов будет зависеть от ряда факторов:
- Габаритных размеров – длины, поперечного сечения и площади взаимодействия с грунтом. Чем больше площадь, тем большую добычу электричества можно осуществить таким методом.
- Глубина расположения – чем глубже разместить электроды, тем больше электричества будет собираться по всей высоте металла.
- Состав грунта – химическая составляющая любого электролита будет определять проводимость электрического тока, способность генерации электрического заряда и т. д. Поэтому наличие тех или иных солей, концентрации определенных элементов и станет основным отличием для естественного электролита на поверхности планеты.
Для практической реализации данного метода получения бесплатной энергии возьмите пару электродов из разных металлов, составляющих гальваническую пару. Наиболее популярным вариантом являются медь и цинк. Погрузите медный провод в грунт, а затем отступите от него на 25 – 30 см и погрузите в грунт цинковый электрод. Для лучшего эффекта землю между ними необходимо залить крепким раствором обычной пищевой соли.
Чтобы оценить результат эксперимента подождите минут 10 – 15, а затем подключите к выводам земляной батареи вольтметр. Как правило, вы получите напряжение от 1 до 3В, в зависимости от глубины залегания электродов и типа почвы показатели могут отличаться. Это конечно не много, но для питания светодиода или другого слаботочного прибора будет вполне достаточно. Со временем солевой раствор впитается и его действие начнет ослабевать, поэтому и ресурс электричества на выходе также снизится.
Если вы проделываете эти манипуляции для постоянного использования гальванического элемента, питающего какую-либо электрическую установку, то будет рациональным попробовать забивать электроды в разных местах на земельном участке. А после выбрать наиболее выгодный вариант. Если напряжения от пары штырей будет слишком малым, то нужно забить несколько и подключить их последовательно. Но помните, постоянное подливание растворенной соли сделает почву непригодной для выращивания сельскохозяйственных и декоративных культур.
Потенциал между крышей и землей
Такой метод получения электричества из земли возможен для домов с металлической крышей. Вам понадобится подключить один электрод к металлической пластине, которая представляет собой единую конструкцию или антенну. А второй подвести к проводу заземления, который соединяется с общим контуром, при его отсутствии можете просто вбить штырь в землю. Крыша здания обязательно должна быть изолирована от земли.
Рис. 4. Потенциал между крышей и землей
Чем большую площадь занимает металлическая антенна и чем выше она расположена, тем большее напряжение вы получите. Как правило, в частном секторе удается сгенерировать электричество в 1 – 2В, поэтому метод носит скорее экспериментальный, чем практический характер. Так как ни поднимать вверх, ни расширять площадь крыши ради нескольких вольт электричества будет нецелесообразным.
Выводы
Из рассмотренных выше методов видно, что в земле присутствует как огромные запасы статического электричества, так и большой потенциал других видов энергии, которую можно поставить на службу человеку. Для этого нет нужды сжигать топливо, однако не один из способов не дает возможности запитать мощный прибор.
Поэтому куда выгоднее в качестве альтернативных источников получения электричества использовать те же солнечные батареи или ветрогенераторы. Дальнейшее изучение методов генерации электричества из земли может принести более продуктивные результаты, но сегодня мы можем довольствоваться лишь энергией ради эксперимента.
Электричество на даче: откуда получить и как правильно распорядиться
Сегодня электричество в дачном доме уже не относится к излишествам: комфортный отдых и эффективный уход за участком сложно представить без соответствующего оборудования, так что задумываться об энергоснабжении рано или поздно придется.
Естественно, в этом процессе есть множество нюансов, и потому мы настоятельно рекомендуем вам ознакомиться с данной статьей. Конечно, все тонкости не раскроем, но общее представление о масштабах предстоящей работы вы получите.
Чтобы в загородном доме было тепло, светло и уютно, стоит позаботиться об энергоснабжении
Где взять?
Традиционные источники
Наиболее актуальным для владельцев загородных домов и дачных участков будет вопрос об источнике электричества (читайте также статью » GSM видеонаблюдение для дачи: присматриваем за участком в дистанционном режиме»).
И если ограничиваться лишь традиционными технологиями, то схем энергоснабжения можно выделить всего две:
Подключение к ЛЭП
- Централизованное – участок «запитываем» от проходящей на относительно небольшом расстоянии линии электропередач.
- Автономное – в качестве источника выступает генератор.
Рассмотрим оба варианта более подробно.
- Если говорить об использовании централизованного энергоснабжения, то основным плюсом является достаточно высокая предоставляемая мощность. Так, в этом случае можно даже организовать обогрев дачи электричеством, не разорившись на топливе для генератора.
Присоединение к проводам на столбе
- С другой стороны, сам процесс подключения к ЛЭП связан с весьма утомительными бюрократическими процедурами. Даже в том случае, если провода проложены сравнительно недалеко, на этапе согласования могут возникнуть проблемы.
Обратите внимание! Самовольное подключение к ЛЭП является правонарушением, и при обнаружении подобного факта вам придется заплатить немалый штраф. Также стоит помнить, что выполнять такие работы должны исключительно профессионалы с соответствующим уровнем допуска.
- Аренда дизель — генератора для дачи или покупка такого устройства могут обеспечить вас энергией вне зависимости от расположения участка. Да, эта технология является более затратной с финансовой точки зрения, но так вы можете быть уверены, что свет в доме и на участке не пропадет даже во время непогоды (обрывы проводов, особенно в удаленных районах — не редкость).
Даже компактное устройство может обеспечить освещение целого дома
- Еще один вариант автономного энергоснабжения – монтаж газового генератора. Конечно, цена прибора будет выше, чем у дизельной установки, да и обслуживать его могут только специалисты, но себестоимость киловатта энергии при этом получится существенно ниже.
В итоге оптимальная инструкция будет следующей: если есть возможность – подключаемся к линии электропередач и используем ее мощности, но на всякий случай устанавливаем в доме или сарае генератор с небольшим запасом топлива. Если возможности подключения нет – просто покупаем более производительный генератор, и проектируем электросеть участка с оглядкой на ограничения по производительности установки.
Альтернативные источники
Впрочем, современные технологии позволяют получить электричество на халяву для дачи. Под «халявой» в данном случае имеется полная или практически полная независимость от цен на энергоносители. Конечно, само альтернативное оборудование нужно приобретать, причем за довольно большие деньги, но со временем (от двух до пяти лет) оно окупается, и дальше работает «в плюс».
Фото крыльчатки ветряного генератора на крыше дома
Несколько наиболее эффективных технологий можно выделить, и их особенности мы свели в таблицу:
Методика | Особенности выработки энергии |
Геотермальная | На участке пробуриваем скважину, в которую погружаем зонд с теплоносителем. Поскольку в глубине грунта температура практически постоянна, то при прохождении по зонду охлажденный теплоноситель будет отбирать часть грунтового тепла. Извлеченная энергия может использоваться как для прямого обогрева дома, так и для выработки электричества. |
Солнечная | На крыше устанавливаются либо солнечные коллекторы из стеклянных трубок, заполненных теплоносителем, либо солнечные батареи. Как и в случае с геотермальными установками, энергией солнца можно не только обогревать дом, но и питать инвертор для обеспечения электроснабжения. |
Ветряная | На крыше дома или на отдельной мачте устанавливаем ветряк, соединенный с генератором. При вращении лопастей вырабатывается электричество, которое аккумулируется в батареях большой емкости и может быть использовано для решения самых разных задач. |
Схема работы геотермального генератора
Впрочем, такое бесплатное энергоснабжение является достаточно капризным. Нет ветра или солнце зашло за тучи на целый день — и придется сидеть в темноте! Вот почему специалисты настоятельно рекомендуют комплектовать подобные установки емкими аккумуляторами, а в качестве резервного источника питания держать как минимум небольшой дизель-генератор.
Особенности монтажа электросети
Если с источниками все более-менее ясно, переходим к правилам обустройства самой электросети:
- Монтаж проводки и электроприборов в дачном доме вполне можно выполнить и своими руками, а вот подключение к магистрали или генератору лучше доверить специалистам-электрикам.
- На входе в дом обязательно устанавливаем щиток со счетчиком. Также каждую ветку проводов присоединяем к щитку через УЗО – автоматический размыкатель цепи. Использование таких предохранителей способно защитить систему от перепадов напряжения и коротких замыканий.
Совет! Если вы часто бываете в отъездах, то есть смысл обустроить дистанционное включение электричества на даче. Для этого в щитке монтируем специальный модуль с GSM-приемником, который активирует всю систему по сигналу с мобильного телефона. Особенно удобно использовать такой управляемый блок в зимнее время: к вашему приезду отопительные приборы как раз успеют прогреть воздух.
Для защиты от огня провода прокладываем в негорючих каналах
- При использовании генераторов нужно тщательно рассчитывать мощность всех включаемых в сеть приборов. К примеру, обогрев дачного дома электричеством может потребовать установки отдельной генерирующей установки, иначе осенью и зимой придется выбирать: либо у нас работают батареи, либо светят лампочки.
- Дачные дома из блок — контейнеров, каркасные конструкции и бревенчатые здания отличаются высокой горючестью. Чтобы снизить риск пожара, вся проводка должна прокладываться в негорючих, желательно металлических, коробах.
Правильное заземление — одно из условий безопасности
- Весьма желательным является также заземление проводов. Для этого каждую ветку системы присоединяем к заземляющему контуру, выведенному наружу. Контур чаще всего представляет собой треугольник из стальных или омедненных стержней, вкопанных в землю и соединенных с домовой электросетью токопроводящим кабелем.
Вывод
Обеспечить электричество в доме и на даче – дело чести любого мастера. Благо, на сегодняшний день возможностей для этого более чем достаточно, и мы с легкостью сможем выбрать, что именно использовать в качестве источника энергии (см.также статью «Электричество на даче своими руками: от подготовки коммуникаций до выбора источника питания»).
Для более подробного ознакомления с данной темой рекомендуем вам просмотреть видео в этой статье: из него вы сможете почерпнуть несколько новых идей по электрификации вашего загородного дома.
Как получить бесплатное электричество в домашних условиях — K-News
Когда речь заходит об альтернативных источниках, то первое, о чем вспоминают — это, конечно, солнечные панели и ветрогенераторы. Но есть более интересные источники, из которых вы сможете в домашних условиях извлечь электроэнергию. Об этом рассказывает hi-tech.mail.ru.
Как получить электричество от батареи отопленияДля того чтобы получить бесплатное электричество от радиаторов отопления, нам понадобится дополнительное оборудование в виде термоэлектрического элемента Пельтье. Элемент Пельтье представляет собой две керамические пластины, между которыми заключено большое количество полупроводников в виде термопар.
Принцип действия основан на возникновении разности температур при протекании электрического тока. Обычно такие устройства используют для создания мобильных холодильных установок, но можно добиться и обратного эффекта. Достаточно изменить полярность подключения элемента, и эффект охлаждения сменится на нагревание.
Элемент Пельтье. Фото: aliexpress.ru
Если с одной стороны подвести тепло к этому элементу, а с другой, наоборот, охлаждать его, то благодаря созданию разности температур на его поверхностях, можно снимать с него электроэнергию, которой вполне хватит, например для работы светодиодной лампы.
Чтобы закрепить конструкцию на трубе отопления, можно воспользоваться алюминиевым уголком. А для повышения плотности контакта образовавшиеся зазоры можно уплотнить алюминиевой фольгой.
1- Труба отопления 2- Алюминиевый уголок 3- Радиатор от старого ПК 4- Элемент Пельтье (40*40 мм) 5- Повышающий преобразователь 6- Алюминиевая фольга (Фото: Youtube / Игорь Белецкий)
Также потребуется преобразователь напряжения, который повышает создаваемое элементом Пельтье напряжение 0,5 В до 3–5 В, необходимых для работы светодиодной лампы.
Повышающий преобразователь напряжения. Фото: aliexpress.ru
С одной стороны мы нагреваем элемент Пельтье теплом от радиатора отопления, а с другой стороны охлаждаем его окружающим воздухом. Чтобы увеличить площадь поверхности охлаждения, можно использовать обычный радиатор охлаждения от старого компьютера. Чем больше будет его площадь, тем лучше.
Такое устройство может пригодиться в качестве бесплатного дежурного освещения, например, в подъезде. Конечно, этот метод получения электричества можно назвать лишь условно бесплатным, ведь за отопление вы так или иначе платите деньги, но почему бы не использовать кэшбек в виде бесплатной электроэнергии?
Электроэнергия из водопроводаВторой не менее интересный способ — врезка минигенератора в водопровод. Получение электричества от энергии движения потока воды само по себе не ново. Гидроэлектростанции, использующие подобный принцип, работают по всему миру. А плотины для их использования являются одними из самых сложных технических устройств.
Небольшие генераторы, которые можно установить непосредственно в домашний водопровод, можно приобрести в интернет-магазинах. Генератор, подключают к небольшому аккумулятору и используют накопленную таким образом электроэнергию для освещения.
Фото: aliexpress.ru
Некоторые умельцы делают такие генераторы своими руками, собирая их из старого водяного счетчика и помпы от стиральной машины. Подключают такие генераторы даже к бачкам унитаза. Расчеты показывают, что выработки электричества от одного смыва бачка унитаза хватит на 12 минут непрерывного свечения светодиодной лампы мощностью 5 ватт.
Фото: Youtube / Дмитрий Компанец
Электричество от самодельных элементов питанияЭлектроэнергию можно получить от импровизированных батареек, собранных буквально «на коленке». Как известно любая батарея использует в своей основе заряженные частицы образующиеся в процессе взаимодействия металлов, помещенных в токопроводящую жидкость.
Достаточно взять две пластины различных металлов, например, цинка и меди, и поместить их в стаканчик с водой, а затем замкнуть эту цепь, используя в качестве нагрузки светодиодную лампу. Такая конструкция позволит вам получить порядка 0,8 В.
Причем это напряжение не будет зависеть от площади пластин.
Если подсоединить несколько таких пар пластин последовательно, то вы получите довольно емкую батарею, которой хватит на работу хорошего светодиодного фонаря.
Фото: classtube.ru
Электричество из землиВ 1896 году Натан Беверли Стаблфилд изготовил батарею, используя для этого энергию земли и получил патент на своё устройство.
Для него нужны два провода, один металлический без изоляции – чтобы он мог активизировать магнитное поле, которое создается и поддерживается в пределах и вокруг тела катушки. Второй – медный в обмотке, который наматывается на стальной сердечник.
Фото: Youtube / Lidmotor
После каждого витка укладывается слой изолирующего материала. Такую конструкцию помещают во влажную землю, провода выводят наружу и батарея улавливает естественные электрические токи, позволяя использовать электричество в своих целях. Такие батареи можно использовать, например, на своем участке для декоративной подсветки дорожек.
Фото: Youtube / Lidmotor
Как видите, электрическая энергия окружает нас и находится буквально повсюду. Главное – это знать основные принципы и законы, по которым она извлекается и тогда извлечь ее не составит труда даже в домашних условиях с минимальными затратами.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
как получить электрический ток из земли и воздуха своими руками
В наш век высоких технологий трудно представить свою жизнь без электричества. На этом ресурсе работает практически вся наша домашняя техника, без которой жизнь станет более сложной и менее интересной. Однако с сегодняшними ценами на электричество, многие задумываются о возможности получать подобный вид энергии бесплатно. Поэтому, сегодня мы решили вам рассказать, о нескольких интересных вариантах. Нет, мы не будем описывать способы обмана коммунальных служб или убеждать вас, что без большинства электроприборов можно обойтись. Мы расскажем вам о четырех самых необычных вариантов получения необходимого всем природного ресурса.
Немного о том, что такое бесплатное электричество
На данный момент стоимость коммунальных услуг достаточно высока. Поэтому многие люди задумываются об источниках необходимых ресурсов, более дешевых, чем централизованный газ и электроэнергия.
Для обеспечения дому тепла с минимальной затратой средств был изобретен твердотопливный пиролизный котел . В данном агрегате газ образуется за счет перегорания твердого топлива. Этого прибора достаточно для обогрева целого дома.
Более того, многие твердотопливные печи имеют варочные поверхности и духовки. Используя такой прибор, вы можете вовсе отказаться от проведения газа в свой дом.
С электричеством все намного сложнее. На данный момент в современных домах столько электроприборов, что обеспечить достаточное количество энергии альтернативными способами для них всех, действительно тяжело. Однако вы можете с помощью необычных способов получения бесплатной электроэнергии, сделать максимально дешевым обслуживание некоторой части электроприборов. Давайте посмотрим, что это за способы.
Какое может быть бесплатное электричество для дома:
- Самым распространенным считается электричество, полученное от энергии солнца;
- Также пользуется дармовая энергия, получаемая из воздуха и атмосферы;
- Очень интересно получение статического электричества из земли;
- Электрический ток также можно вырабатывать из эфира;
- На грани фантастики кажется халявное электричество из нечего;
- Как оказалось, из магнитного поля тоже можно добывать электричество;
- Возможна добыча электричества из дерева, воды и других подручных средств.
Некоторые из этих способов способны обеспечить электричеством лишь маленькую лампочку. Других хватит, чтобы заставить работать как минимум половину электроприборов в доме.
Домашний генератор электроэнергии «на халяву» создать невозможно. Ведь на материал для таких устройств нужно потратить некоторые деньги. Поэтому, говоря: «Выработка электричества на шару», мы имеем ввиду дешевое электричество, если, конечно, речь идет не про Anticlove.
Сегодня мы расскажем вам о нескольких, самых перспективных альтернативных способах добычи электричества. Также мы поговорим о возможности получения электроэнергии из нечего.
Можно ли получать электричество из земли
Одним из самых интересных и невероятных способов, как добыть электричество, является его получение из земли. Интересно? Еще бы! Ведь в отличие от энергии из атомных частицу и солнечных батарей , такой способ добычи энергии пока не получил всеобщего распространения.
В домашних условиях можно получить не только свет, но и необходимое количество тепла. Для этого можно использовать твердотопливные печи или котлы.
Вам, наверное, интересно, как получают электричество из земли. Здесь все не так просто. Дело в том, что земля не только сочетает в себе три среды, ведь между земляными частицами находятся молекулы воды и воздуха, но и состоит из структур, мицеллы и гумуса, имеющих разные потенциалы.
Из за этого внешняя оболочка земли имеет отрицательный заряд, а внутренняя – положительный. Как вы знаете, положительные частицы притягиваются к отрицательным. За счет этого в почве происходят электрические процессы. Попробовать сделать земляную электростанцию можно своими руками. Для этого нужно знать основы электротехники, но мы вам расскажем краткое пособие по созданию такой конструкции. Итак, как можно добыть земное электричество.
Схема создания земляной электростанции:
- В землю помещается металлический проводник;
- К проводнику присоединяется два других проводника ноль и фаза;
- По этим проводникам электричество течет в дом.
Конечно, такая схема не позволит вам получить свет на весь дом. Ведь в лучшем случае вы получите всего 20 вольт, которых будет достаточно для того, чтобы зажечь пару лампочек. Однако усовершенствуя систему, вы сможете снять нагрузку с части электроприборов.
Способы получения электричества из воздуха
Атмосферное электричество можно получать в больших количествах. К тому же данный вариант обеспечения дома не относится к разряду «необычные способы». Ведь все знают о существовании ветряных электростанций.
Существуют целые поля ветряных электростанций. Они похожи на ряды с огромными вентиляторами. Однако минус такой системы заключается в том, что она вырабатывает электроэнергию. Только когда есть ветер.
На самом деле, взять электроэнергию из атмосферы можно не только из ветра. Есть и другие более интересные способы. Ведь на самом деле воздух – эта самая заряженная стихия.
Источники освещения, работающие от атмосферы:
- Грозовые батареи притягивают молнии. Они состоят из заземления и металлического проводника, между которыми во время удара молнии накапливается свободная энергия. Однако использование такого способа не распространено потому, что невозможно предсказать величину накопившейся электроэнергии, а также из-за опасности этого изделия.
- Ветрогенираторы – это известный всем способ добычи энергии. Вы можете сделать такую станцию и для себя. Однако в этом случае вам придется рассчитать необходимое количество приборов, а также установить их в месте, которое будет максимально ветряным.
- Тороидальный генератор Стивена Марка вырабатывает электричество не сразу, а через некоторое время после его включения. Такое автономное устройство состоит из нескольких катушек, между которыми образуется резонансные частоты и магнитный вихрь. Такие самодельные приборы добывают достаточно электричества для обслуживания одного электроприбора.
- Прибор Капанадзе , вопреки мнению многих состоит не из магнита и проволоки, он сделан по тому же принципу, что и трансформатор Тесла. Он получает эфирное электричество и работает без топлива. Однако устройство такого прибора запатентовано и засекроечено.
Такие варианты добычи электричества из атмосферы очень перспективны. Это новые способы получения этого ресурса, некоторые из которых уже используются в Европе. Некоторые из них можно собрать самому и вполне возможно, все люди будут получать электричество даром из таких приборов.
Халявное электричество из солнца
Большой популярностью в Европе пользуются солнечные батареи. Вы наверняка слышали об этом способе добычи электричества. И это действительно работает, и не является вариантом, как заработать на стекле.
Если вам интересно лучше разобраться в способах получения электричества. Обратитесь к Валерию Белоусову, который выкладывает свои видео на Ютубе.
Конечно, чтобы пользоваться такой энергией, нужно сначала серьезно потратиться, ведь солнечные батареи стоят недешево, а чтобы обеспечить такой энергией весь дом, их нужно будет купить много. Также нужно учитывать, что если ваш дом в лесу преобразовать солнечную энергию в электричество не получится. Проблемы могут возникнуть и в холодное время года. Однако у солнечных станций есть несколько весомых преимуществ.
Преимущества солнечных электростанций:
- Солнечная энергия вечная;
- Она не выделяет в среду вредных веществ и не способствует накоплению радиоволн;
- Вы сможете заранее рассчитать, сколько сможете получить энергии от того или иного количества батарей;
- Цена потраченная на батареи со временем окупится за счет сэкономленных на электроэнергии средств.
Солнечная электроэнергия – это отличная альтернатива централизованному электричеств. С ее помощью может быть обеспечена вся ваша электрика.
Электричество из воздуха своими руками: схема (видео)
Также стоит отметить о возможности получения электроэнергии из ниоткуда. Один предприимчивый датчик решил получить электричество из пирамиды, и к его удивлению после создания такой конструкции на участке и подключению ее к светильникам, лампочки загорелись. На самом деле данная энергия берется из земли, а не из «ничего», и как сделать такой прибор повествует специализированная книга.
Земные недра имеют практически неисчерпаемый потенциал, и при желании их можно использовать в качестве источника энергии. Существует несколько способов получения электричества из земли. Схемы эти могут коренным образом отличаться друг от друга, но результат будет похожим. Он заключается в бесперебойном обеспечении электроэнергией с минимальными затратами на ее получение.
Природные источники энергии
В последнее время человечество пытается найти более доступные альтернативы для снабжения собственного жилища электрической энергией. А все потому, что уровень жизни стремительно растет, а вместе с ним увеличиваются и затраты на обслуживание жилых помещений привычными методами. То есть именно дороговизна и постоянный рост цен на коммунальные услуги заставляет людей искать более бюджетные источники энергии, которые так же смогут обеспечить подачу света и тепла в дома.
В настоящее время особой популярностью пользуются трансформирующие энергию из воздуха ветряки, расположенные на открытых пространствах, солнечные батареи, которые устанавливаются прямо на крышах домов, а также всевозможные гидравлические системы различной степени сложности. А вот идея добывать энергию из земных недр почему-то крайне редко применяется на практике, разве что при проведении любительских экспериментов.
Между тем уже сейчас народные умельцы предлагают несколько простых, но вместе с тем достаточно эффективных способов добычи электричества из земли для дома.
Самые простые способы добычи
Не секрет, что в почве (в отличие от воздушной среды) постоянно происходят электрохимические процессы, причина которых кроется во взаимодействии отрицательных и положительных зарядов, исходящих от внешней оболочки и недр. Эти процессы позволяют рассматривать землю не только как мать всего живого, но и в качестве мощнейшего энергетического источника. А для того чтобы воспользоваться им в бытовых нуждах, мастера чаще всего прибегают к трем проверенным способам добычи электричества из земли своими руками. К ним относят:
- Метод с нулевым проводом.
- Способ с одновременным применением двух разных электродов.
- Потенциал разных высот.
В первом случае обеспечение жилого помещения напряжением, достаточным для того, чтобы горело как минимум несколько лампочек, осуществляется за счет фазового и нулевого проводника. Но для того чтобы добиться поставленной цели, лампочку необходимо подключить не только к нулю, но и к заземлению, ведь если жилое помещение оснащено высококачественным заземляющим контуром, то большая часть потребляемой энергии уходит в почву, а такой контакт помогает ее оттуда частично возвращать.
Фактически речь идет о самой примитивной схеме «нулевой проводник — нагрузка — грунт», в которой вырабатываемая энергия не выводится на общий приборный счетчик, то есть ее использование является бесплатным. Однако есть у этого метода и существенный недостаток, который заключается в более чем низком напряжении, колеблющемся в диапазоне от 10 до 20 вольт, и если хочется увеличить этот показатель, то придется усовершенствовать конструкцию, применяя элементы посложнее.
Метод добычи энергии посредством использования двух разных электродов еще проще, так как для его применения на практике используется одна только почва. Естественно, это не может не отразиться и на конечном результате эксперимента, поэтому чаще всего подобные схемы не дают возможность получать напряжение больше 3 вольт, хотя этот показатель имеет свойство варьироваться в ту или иную сторону в зависимости от влажности и состава грунта.
Для проведения опыта достаточно погрузить в почву два разных проводника (обычно в ход идут стержни из меди и цинка), которые предназначены для создания разности между отрицательным (цинк) и положительным (медь) потенциалами. Обеспечить их взаимодействие между собой поможет концентрированный электролитный раствор, который можно приготовить самостоятельно, используя дистиллированную воду и обычную поваренную соль.
Уровень вырабатываемого напряжения можно поднять , если глубже погрузить электродные стержни и увеличить концентрацию соли в используемом растворе. Не последнюю роль в этом вопросе играет и площадь поперечного сечения самих электродов. Примечательно, что грунт, обильно политый электролитом, больше не сможет применяться для выращивания любых растений и культур. Этот момент обязательно следует учитывать, предусматривая качественную изоляцию во избежание засоления прилегающих участков.
Разница потенциалов может быть обеспечена и такими элементами, как крыша частного дома и грунт, но при условии, что кровля будет выполнена из любого металлического сплава, а поверхность земли перекрыта ферритом.
Однако и этот метод не даст значительных результатов, так как средний показатель напряжения, которое удастся получить таким способом, вряд ли превысит 3 вольта.
Альтернативная методика
Если рассматривать земной шар как один большой сферический конденсатор с отрицательным внутренним потенциалом, а его оболочку как источник положительной энергии, атмосферу как изолятор, а магнитное поле как электрогенератор, то для получения энергии достаточно будет просто подключиться к этому природному генератору, обеспечив надежное заземление. При этом конструкция самого устройства должна в обязательном порядке включать в себя следующие элементы:
- Проводник в виде металлического стержня, высота которого должна превышать все расположенные в непосредственной близости объекты.
- Качественный контур заземления, к которому подводится металлический проводник.
- Любой эмиттер, способный обеспечить свободный выход электронов из проводника. В качестве этого элемента может быть использован мощный электрогенератор или даже классическая катушка Тесла.
Вся суть этого метода заключается в том, что высота используемого проводника должна обеспечивать такую разницу противоположных потенциалов, которая позволит электродам продвигаться не вниз, а вверх по погруженному в грунт металлическому стержню.
Что же касается эмиттера, то его основная роль заключается в высвобождении электродов, которые попадают в окружающую среду уже в виде чистых ионов.
И после того как атмосферный и электромагнитный потенциал земли сравняются, начнется выработка энергии. К этому моменту к конструкции уже должен быть подключен ее сторонний потребитель. В этом случае показатель силы тока в электрической цепи будет полностью зависеть от того, насколько мощным окажется эмиттер. Чем выше его потенциал, тем большее число потребителей можно подключать к генератору.
Естественно, соорудить такую конструкцию в пределах населенных пунктов своими силами практически невозможно, ведь все упирается в высоту проводника, которая должна превышать деревья и все сооружения, но сама идея может стать основой для создания масштабных проектов, позволяющих получать электричество из земли даром.
Электроэнергия из земли по Белоусову
Особого внимания заслуживает теория Валерия Белоусова, который на протяжении многих лет занимается глубоким изучением молний и изобретением наиболее надежной защиты от этого опасного природного явления. Кроме того, этот ученый является автором нескольких уникальных в своем роде книг, в которых изложено альтернативное видение процесса выработки и поглощения электрической энергии земными недрами.
Схема с двойным заземлением
Один из способов получения электричества из земли подразумевает использование двойного заземления, позволяющего выводить энергию из грунта в бытовых целях бесплатно.
При этом схема предполагает наличие единственного заземляющего контура пассивного типа без активатора, главная задача которого заключается в принятии одностороннего заряда в первом полупериоде с дальнейшим его возвращением обратно при переходе в фазу второго полупериода. То есть речь идет о своеобразном буфере обмена, роль которого может сыграть обычная газовая труба, подведенная в типовую квартиру.
Сооружение конструкции и суть опыта
Последующая сборка конструкции предполагает выполнение следующих манипуляций:
Этот вид неведомой доселе энергии автор назвал «белой», сравнив ее с чистым листом бумаги, на которую при желании можно наложить все что угодно, открыв для всего человечества принципиально новые возможности. Но главная идея, которую выделяет автор, заключается в том, что все энергии на планете протекают индивидуально по своим законам, но все это происходит в едином пространстве.
Дармовое, даром — без затрат или за небольшие деньги, но только совсем небольшие. Попробуем рассмотреть некоторые возможности получения электроэнергии в домашних условиях, без катастрофических последствий для бюджета и здоровья. Соблюдение техники безопасности и просто здравый смысл необходимы для успеха.
Какие варианты рассматривать не стоит
Рассматривать варианты с одноразовыми крупными затратами на приобретение солнечных панелей или ветрогенераторов для получения атмосферной энергии не стоит, тема эта свою остроту утратила: если есть возможность — заплати один раз и пользуйся всю оставшуюся жизнь, лет через 10−20 будешь в прибыли, уже чуть не целыми странами это доказано. Кое-где даже излишки полученной электроэнергии принимают. Генераторы на двигателях внутреннего сгорания к экономичным способам получения электричества также не относятся, самое дешёвое топливо всё равно регулярно требует немалых денег.
Итак, встаёт вопрос о том, как дома получить электричество из ничего и «на халяву». Вопрос из разряда не имеющих ответа: что-то из совсем ничего получить невозможно в принципе, с халявой тоже всё ясно — бесплатный сыр только в мышеловке.
Сформулируем задачу иначе и подумаем, как сделать электричество своими руками без особенных затрат. Со второй частью задачи всё более или менее ясно: самодельное из того, что есть, равнозначно дармовому; а с электроэнергией надо слегка разобраться, вспомнить школьный курс физики.
Краткий обзор
Чтобы добывать электроэнергию, нужно создать рабочую схему соединения проводником с нагрузкой двух точек, обладающих разным потенциалом. Простой пример: включаем свет в комнате, тем самым соединяем точку с нулевым потенциалом — нулевой провод, с точкой потенциалом в 220 В — фазный провод с переменным напряжением от -380 вольт до +380 вольт, посредством проводника (электропроводка, включатель-выключатель, патрон) с нагрузкой — сама лампочка.
Формулировка задачи упростилась: где взять точки с разным потенциалом? Взгляд сразу обращается к небу: атмосфера является неисчерпаемым источником статического электричества, разряды молний в холодном воздухе над тёплой землёй — явное и наглядное тому подтверждение. Получением электричества из эфира озадачился ещё более века назад Никола Тесла, но его опыты в домашних условиях можно повторить разве только в развлекательных целях с помощью катушки Тесла. Получение разрядов смотрится очень эффектно, но… это не добыча, а преобразование энергии.
Получить атмосферное электричество своими руками , конечно, можно, простейший способ — это элементарный громоотвод, но как его использовать? Тот, кто научится этому, совершит переворот в электроэнергетике, сравнимый по значению с «приручением» атома. Различные поделки на эту тему не решают проблемы никак, это просто трюки. А также совсем не стоит обращать внимание на различные псевдонаучные фокусы с тороидальными, сверхъединичными трансформаторами или генераторами свободной энергии Стивена Марка. Получать энергии больше, чем затрачено, невозможно.
- Закон сохранения массы незыблем.
- Закон сохранения энергии незыблем.
А как же атомная энергия ? При распаде атомного ядра происходят процессы перехода массы в энергию, освобождения внутриядерной энергии, но эти процессы в домашних условиях неприменимы.
В домашних условиях безопасно и без особых затрат можно самостоятельно добыть электричество, используя один из способов:
- Ветровой.
- Химический.
Первый способ основан на преобразовании механической энергии ветра в электрическую. Ветряк можно взять готовый от вентилятора или сделать самому из подручных материалов, например, из пластиковых бутылок. Генератор тоже можно взять готовый, например, с велосипеда, а можно для этих целей использовать электродвигатель от игрушки или бытового прибора. Придётся немного подумать над схемой и компоновкой деталей, каждое такое изделие будет по-своему уникальным, набор составляющих всегда будет разным, из того, что «есть в наличии». Но сам принцип прост и понятен, какие-то частности всегда можно уточнить в сети .
Химический способ получения электроэнергии используется в известных элементах питания , «батарейках». Если два разнородных тела (электрода) находятся в одной среде (электролите), то между ними может происходить обмен молекулами веществ (ионами), обладающих разнополярными зарядами — положительными катионами и отрицательными анионами. Электроды приобретают разные потенциалы, изменяясь по своему химическому составу. Можно попытаться «включить» светодиод, подключив его к двум стержням из разных металлов, вбитых в мокрую землю на небольшом расстоянии друг от друга.
Между жёлтой «медной» монетой и серебристой «серебряной» через тонкую овощную прослойку возникает напряжение до 0,3 вольта. Можно собрать «вольтов столб», выдающий напряжение, достаточное для подзарядки мобильника. Для этого надо сложить столбик таким образом: на жёлтую монетку положить ломтик картофеля, потом серебристую, картофель, медную и так примерно 15 слоёв. Нужно только помнить, что плюс будет на «медной» монете.
Ветровой и химический способы действительно позволяют самостоятельно добывать практически дармовую электроэнергию, но объём добычи будет достаточен только для освещения светодиодами или для подзарядки мобильного.
Добрый день, эксперты-электрики!
Имя мое Саша, и меня мучает вот такой вопрос. Сегодня в сети можно накопать кучу материала на тему, как «матушка Земля» способна обеспечить нас дармовым электричеством, а негодяи нефтяники и атомщики (монополисты) не дают развития технологиям, так как это может перевернуть весь мир.
В общем, слышали вы что-нибудь о том, может ли электрическое и магнитное поле Земли стать источником дешевой электроэнергии? Спасибо за внимание!
Спасибо Вам, Александр, за очень интересный вопрос. Данная тема, поверьте, волнует не только Вас, но и большое количество жителей наше планеты, в том числе и автора данного материала и причин тому несколько.
- Во-первых , это постоянный рост цен на энергоносители, что очень сильно толкает вверх инфляцию на прочие товары, из-за чего мы вынуждены вращаться как белки в колесе, постоянно наращивая производства, плюс современные банковские системы, но не будем об этом.
- Во-вторых , многим не дает покоя окутанная тайной биография знаменитого сербского изобретателя Никола Тесла, который, по слухам, смог построить полноценную электростанцию, которая смогла обеспечить электрической энергией, взятой из эфира, целы город, но технологию заблокировали царившие в то время в Америке промышленники.
- В-третьих , существуют рабочие схемы, которые мы и обсудим сегодня, а, как известно, все, что работает, можно усовершенствовать.
В интернете можно найти огромное количество видео, в которых домашние умельцы демонстрируют свои установки, которые в качестве источника энергии используют магнитное и электрическое поле Земли. Кто-то даже умудряется такие агрегаты продавать, но видеть в работе подобные устройства нам не приходилось, что, однако, не отрицает их реального существования.
Ходят слухи, что некая швейцарская компания, чье название автор успешно позабыл, официально продает за баснословные деньги компактные аппараты, с условием обслуживания только ее специалистами, компактные установки, способные обеспечивать электричеством полноценный дом со всеми приборами в нем.
Однако стоит понимать, что большинство таких фото и видео материалов являются подделками, с целью получения выгоды или славы, а отговорки, мол, выложить схемы устройств не можем, так как тут же изобретателей «прессанут» спецслужбы, можно считать лишь отговорками. При желании в интернет можно запустить что угодно, и вычистить это полностью будет нереально, хотя отрицать до конца теорию заговора, мы не хотим. Мало ли…
Но все это лирика, давайте поговорим, что мы можем соорудить своими руками, и может ли такая энергия пригодиться в быту.
Что правда, а что миф
Итак, можно ли получить электричество, использовав электрическое магнитное поле Земли?
Теоретически да! Земля – это, по сути, один огромный конденсатор, имеющий сферическую форму.
- На внутренней поверхности планеты происходит накопление отрицательного заряда, тогда как на наружной – положительного.
- Изолятор между ними – это атмосфера, через которую постоянно протекает ток, а разница потенциалов при этом сохраняется;
- Потерянные заряды восстанавливаются за счет магнитного поля, являющегося, по сути, генератором.
Как же извлечь электричество из этой нехитрой схемы? Устройство должно состоять из следующих элементов:
- Катушка Тесла (эмиттер) — генератор высоковольтный, который позволяет электронам покидать проводник;
- Проводник;
- Контур заземляющий, соединенный с проводником.
Дальнейшая инструкция в теории проста! В идеале, нам осталось подключиться к полюсу генератора и позаботится о качественном заземлении, но…
- Самая высока точка установки, где располагается эмиттер, должна расположиться на такой высоте, чтобы потенциал электрического поля Земли, а точнее его разница, поднимал электроны вверх по проводнику.
- Эмиттер, в виде ионов, станет их высвобождать в атмосферу и будет это происходить до тех пор, пока уровень потенциалов не сравняется.
- К такой цепи могут подключаться потребители тока, причем их количество будет зависеть от мощности катушки Тесла.
- Да, чуть не забыли! Нужно учесть высоту всех заземленных проводников в округе (деревья, металлические столбы, высотки и прочее) и сделать установку выше их всех, что делает затею практически нереальной к исполнению.
Что можно попробовать сделать
Давайте разберем два простейших способа, как добыть энергию из земли.
Принцип гальванической пары
Наша задача, найти разность потенциала, и в земле это сделать проще всего, так как она состоит из газов, воды и минеральных веществ. Грунт – это множество твердых частиц, между которыми находятся пузырьки воздуха и молекулы воды.
Элементарная единица почвы – мицелла. Это глинисто-гумусовый комплекс, обладающий разностью потенциалов. Эти частицы накапливают заряды по тому же принципу, что и вся планета, поэтому в почве постоянно протекают электрохимические реакции. И наша задача подключится к этой «сети».
Использовать можно два электрода, сделанных из разных металлов (медь и оцинкованное железо), то есть будет использоваться принцип, как в обычной солевой батарейке. Помимо гальванической пары нам потребуется электролит (раствор соли).
- Погружаем электроды в грунт где-то на полметра, на расстоянии в 25 сантиметров друг от друга.
- Устанавливаем вокруг кусок трубы нужного диаметра, чтобы оградить остальную почву от электролита, так как уровень соли не позволить расти в месте поливки никаким растениям.
- Готовим насыщенный водный раствор соли и проливаем им землю между электродами.
- Подключаем к выводам вольтметр спустя минут 15 и видим, что прибор показывает напряжение в 3В.
Итого, к полученному источнику питания можно подключить маломощную светодиодную лампу. Показания вольтметра будет разниться в зависимости от плотности грунта, его влажности и прочих показателей, так что на разных участках результаты будут отличными.
Способ с заземлением
Если ваш частный дом оборудован нормальным контуром заземления, то знайте, что часть потребляемого вами тока уходит через него в грунт, особенно если включено сразу много электроприборов.
В результате этого процесса, между нулевым проводом вашей сети и заземляющим возникает разница потенциалов, составляя от 15 до 20 Вольт. Подключив к ним низковольтную лампочку, вы заставите ее светиться
Интересно знать! Данный ток не будет регистрироваться электрическим счетчиком, так как фактически он через него уже прошел.
Схему можно усовершенствовать, установив трансформатор и выровняв тем напряжение. А включив в схему аккумулятор, можно запасать энергию, что позволит использовать схему, когда остальные приборы в доме «молчат».
Вариант рабочий, но подходит он только для частных домовладений, так как в квартирах нет нормального заземления, а использование водопроводных труб для этого законодательно запрещено. Тем более нельзя использовать для подключения землю и фазу, так как заземление окажется под напряжением в 220В – цена такого опыта, возможно, чья-то жизнь.
Вывод
Итак, поле электрическое нашей планеты, безусловно, может послужить практически неисчерпаемым источником энергии, но официально извлекать ее пока не научились и в этом направлении ведутся многие разработки. Не стоит забывать, что многие законы физики человек так и не объяснил, и ориентируется по теориям, которые периодически нарушаются. А что озвученные нами схемы, то они малоэффективны, но при желании вы можете поэкспериментировать. На этом все! Надеемся, материал был Вам полезен!
Одной из самых больших ценностей современного мира является электричество. В связи с ростом стоимости энергоносителей человечество пытается находить альтернативные и доступные источники энергии, склоняясь к самым радикальным решениям. Некоторые энтузиасты прикладывают массу усилий, чтобы добыть электричество из ничего, а их идеи порой выглядят просто безумно.
Общая информация
В течение многих лет ученые ищут альтернативный источник электрической энергии, который позволит получать электричество из доступных и восстанавливаемых ресурсов. Возможность добыть ценные ресурсы из воздуха интересовала еще Теслу в XIX веке. Но если энтузиасты прошлых веков не имели в своем распоряжении столько технологий и изобретений, как современные исследователи, то сегодня возможности по реализации самых сложных и безумных идей выглядят вполне реально. Получить альтернативное электричество из атмосферы можно двумя методами:
- благодаря ветрогенераторам;
- с помощью полей, которые пронизывают атмосферу.
Наукой доказано, что электрический потенциал способен накапливаться воздухом за определенный промежуток времени. Сегодня атмосфера настолько пронизана различными волнами, электроприборами, а также естественным полем Земли, что получить из нее энергоресурсы можно без особых усилий или сложных изобретений.
Классическим способом добычи энергии из воздуха является ветрогенератор. Его задача заключается в преобразовании силы ветра в электричество, которое поставляется для бытовых нужд. Мощные ветровые установки активно используются в ведущих странах мира, включая:
- Нидерланды;
- Российскую Федерацию;
Однако одна ветряная установка способна обслужить лишь несколько электроприборов, поэтому для питания населенных пунктов, фабрик или заводов приходится устанавливать огромные поля таких систем. Помимо существенных плюсов у этого способа есть и недостатки. Один из них — непостоянность ветра, из-за чего нельзя предугадать уровень напряжения и накопления электрического потенциала. В числе плюсов ветрогенераторов выделяют :
- практически бесшумную работу;
- отсутствие вредных выбросов в атмосферу.
Реальность или миф
Когда речь идет о получении энергии из воздуха, большинство людей думает, что это откровенный бред. Однако добыть энергоресурсы буквально из ничего вполне реально. Более того, в последнее время на тематических форумах появляются познавательные статьи, чертежи и схемы установок, позволяющих реализовать такой замысел.
Принцип действия системы объясняется тем, что в воздухе содержится какой-то мизерный процент статистического электричества, только его нужно научится накапливать. Первые опыты по созданию такой установки проводились еще в далеком прошлом. В качестве яркого примера можно взять знаменитого ученого Николу Теслу, который неоднократно задумывался о доступной электроэнергии из ничего.
Талантливый изобретатель уделил этой теме очень много времени, но из-за отсутствия возможности сохранить все опыты и исследования на видео большинство ценных открытий осталось тайной. Тем не менее ведущие специалисты пытаются воссоздать его разработки, следуя найденным старым записям и свидетельствам современников. В результате многочисленных опытов ученые соорудили машину, которая открывает возможность добыть электричество из атмосферы, то есть практически из ничего.
Тесла доказал, что между основанием и поднятой пластиной из металла присутствует определенный электрический потенциал, являющий собой статическое электричество. Также ему удалось определить, что этот ресурс можно накапливать.
Затем ученый сконструировал сложный прибор, способный накапливать небольшой объем электрической энергии, используя лишь тот потенциал, который находится в воздухе. Кстати, исследователь определил, что незначительное количество электроэнергии, которая содержится в воздухе, появляется при взаимодействии атмосферы с солнечными лучами.
Рассматривая современные изобретения, следует обратить внимание на устройство Стивена Марка. Этот талантливый изобретатель выпустил тороидальный генератор, который удерживает намного больше электроэнергии и превосходит простейшие разработки прошлых времен.
Полученного электричества вполне хватает для функционирования слабых осветительных приборов, а также некоторых бытовых устройств. Работа генератора без дополнительной подпитки осуществляется в течение большого промежутка времени.
Простые схемы
Желая добыть атмосферное электричество своими руками, следует рассмотреть различные схемы и чертежи. Некоторые из них настолько простые, что даже начинающий изобретатель без особых трудностей сможет воплотить их в жизнь и создать примитивную установку. Важно отметить, что современные сети и линии электропередач вызывают дополнительную ионизацию воздушного пространства, что повышает количество электрического потенциала, содержащегося в атмосфере. Остается научиться добывать его и накапливать.
Наиболее простая схема подразумевает использование земли в качестве основания и металлической пластины в виде антенны. Такое устройство может накапливать электроэнергию из воздуха, а затем распределять ее для решения бытовых задач.
При создании такой установки не приходится задействовать дополнительные накопительные приборы или преобразователи. Между металлической землей и антенной устанавливается электрический потенциал, который имеет свойство расти. Однако из-за непостоянной величины предугадать его силу очень проблематично.
Принцип работы такого устройства чем-то напоминает молнию — когда потенциал достигает пиковой отметки, происходит разряд. Из-за этого можно добыть из земли и атмосферы внушительный объем полезных ресурсов.
Среди плюсов вышеописанной схемы следует выделить:
- Простоту реализации в домашних условиях. Такой опыт можно с легкостью выполнить в домашней мастерской, используя подручные материалы и инструменты.
- Дешевизну. При создании устройства не придется покупать дорогие приспособления или узлы. Достаточно найти обычную металлическую пластину с токопроводящими свойствами.
Однако кроме плюсов есть и существенные недостатки. Один из них заключается в высокой опасности, связанной с невозможностью рассчитать примерное количество ампер и силу импульса. Также в рабочем состоянии система создает открытый контур заземления, способный притягивать молнию. Именно по этой причине проект не приобрел массового распространения.
Генератор Стивена Марка
Есть еще одна интересная и рабочая схема — генератор TPU, позволяющий добыть электричество из атмосферы. Ее придумал знаменитый исследователь Стивен Марк.
С помощью этого прибора можно накопить определенный электрический потенциал для обслуживания бытовых приборов, не задействуя при этом дополнительную подпитку. Технология была запатентована, в результате чего сотни энтузиастов пытались повторить опыт в домашних условиях. Однако из-за специфических особенностей ее не удалось пустить в массы.
Работа генератора Стивена Марка осуществляется по простому принципу: в кольце устройства происходит образование резонанса токов и магнитных вихрей, которые вызывают появление токовых ударов. Для создания тороидального генератора нужно придерживаться следующей инструкции:
После выполнения перечисленных действий остается соединить выводы, установив перед этим конденсатор на 10 микрофарад. Питание схемы осуществляется с помощью скоростных транзисторов и мультивибраторов, которые подбираются с учетом размеров, типа проводов и других конструкционных особенностей.
Способы добычи энергии из земли
Не секрет, что легче всего добывать электричество из твердой и влажной среды. Самым популярным вариантом является почва, в которой сочетается и твердая, и жидкая, и газообразная среда. Между мелкими минералами содержатся капли воды и пузырьки воздуха. К тому же в почве присутствует еще одна единица — мицелла (глинисто-гумусовый комплекс), которая является сложной системой с разницей потенциалов.
Если внешняя оболочка создает отрицательный заряд, то внутренняя — положительный. Мицеллы с отрицательным зарядом притягивают к верхним слоям ионы с положительным. В результате в почве постоянно осуществляются электрические и электрохимические процессы.
Учитывая тот факт, что в почве содержатся электролиты и электричество, ее можно рассматривать не только как место для развития живых организмов и выращивания урожая, но и как компактную электростанцию. Большинство помещений концентрирует в эту оболочку внушительный электрический потенциал, который подается с помощью заземления.
В настоящее время используется 3 способа добычи энергии из почвы в домашних условиях. Первый заключается в таком алгоритме: нулевой провод — нагрузка — почва. Второй подразумевает использование цинкового и медного электрода, а третий задействует потенциал между крышей и землей.
В первом варианте напряжение в дом подается с помощью двух проводников: фазного и нулевого. Третий проводник, заземленный, создает напряжение от 10 до 20 В, чего вполне хватает для обслуживания нескольких лампочек.
Следующий способ базируется на получении энергии только из земли. Для этого нужно взять два стержня из токопроводящих материалов — один из цинка, а другой из меди, а затем установить их в землю. Желательно использовать тот грунт, который находится в изолированном пространстве.
Найти промышленные устройства для получения электрики из земли проблематично, ведь их практически никто не продает. Но создать такое изобретение своими руками, следуя готовым схемам и чертежам, вполне реально.
Создавая прибор по добыче электроэнергии из воздуха, необходимо помнить об определенной опасности, которая связана с риском появления принципа молнии. Чтобы избежать непредвиденных последствий, важно соблюдать правильность подключения, полярность и прочие важные моменты.
Работы по изготовлению устройства для получения доступного электричества не требуют больших финансовых затрат или усилий. Достаточно подобрать простую схему и в точности следовать пошаговому руководству.
Конечно же, сверхмощный прибор своими руками создать проблематично, так как он требует более сложных схем и может обойтись в кругленькую сумму. А вот что касается изготовления простых механизмов, то такую задачу можно реализовать в домашних условиях.
Электричество из земли своими руками: схема для дома
Из года в год стоимость электроэнергии в наших домах и квартирах растет, что заставляет большинство людей задуматься об ее экономии. Но есть и такие, что пытаются всеми возможными способами добыть хоть немного бесплатной энергии, например, электричество из земли. Поскольку число этих людей неуклонно растет, есть смысл рассмотреть вопрос подробнее, что и будет сделано в данной статье.
Мифы и реальность
На просторах интернета есть большое количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электродвигатели и так далее. Еще больше есть различных текстовых материалов, подробно рассказывающих о земляных батареях. К подобной информации не рекомендуется относиться слишком серьезно, ведь написать можно что угодно, а перед съемкой видеоролика провести соответствующую подготовку.
Просмотрев или прочитав эти материалы, вы действительно можете поверить в разные небылицы. Например, что электрическое или магнитное поле Земли содержит океан дармовой электроэнергии, получение которой довольно легко. Правда заключается в том, что запас энергии действительно огромен, но вот извлечь ее вовсе не просто. Иначе никто бы уже не пользовался двигателями внутреннего сгорания, не обогревался природным газом и так далее.
Для справки. Магнитное поле у нашей планеты действительно существует и защищает все живое от губительного воздействия разных частиц, идущих от Солнца. Силовые линии этого поля проходят параллельно поверхности с запада на восток.
Если в соответствии с теорией провести некий виртуальный эксперимент, то можно убедиться, насколько непросто заполучить электричество из магнитного поля земли. Возьмем 2 металлических электрода, для чистоты эксперимента – в виде квадратных листов со сторонами 1 м. Один лист установим на поверхности земли перпендикулярно силовым линиям, а второй – поднимем на высоту 500 м и сориентируем его в пространстве таким же образом.
Теоретически между электродами возникнет разность потенциалов порядка 80 вольт. Тот же эффект будет наблюдаться, если второй лист расположить под землей, на дне самой глубокой шахты. А теперь представьте такую электростанцию – в километр высотой, с огромной площадью поверхности электродов. Кроме того, станция должна противостоять ударам молний, что обязательно будут бить именно по ней. Возможно, это реальность далекого будущего.
Тем не менее получить электричество от земли – вполне возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или немного зарядить сотовый телефон. Рассмотрим способы, позволяющие это сделать.
Электричество от двух стержней
Данный способ основан совсем на другой теории и никакого отношения к магнитному или электрическому полю Земли не имеет. А теория эта – о взаимодействии гальванических пар в солевом растворе. Если взять два стержня из разных металлов, погрузить их в такой раствор (электролит), то на концах появится разница потенциалов. Ее величина зависит от многих факторов: состава, насыщенности и температуры электролита, размеров электродов, глубины погружения и так далее.
Такое получение электричества возможно и через землю. Берем 2 стержня из разных металлов, образующих так называемую гальваническую пару: алюминиевый и медный. Погружаем их в землю на глубину ориентировочно полметра, расстояние между электродами соблюдаем небольшое, хватит 20—30 см. Участок земли между ними обильно поливаем солевым раствором и спустя 5—10 мин производим измерение электронным вольтметром. Показания прибора могут быть разными, но в лучшем случае вы получите 3 В.
Примечание. Показания вольтметра зависят от влажности почвы, ее природного солесодержания, размеров стержней и глубины их погружения.
В действительности все просто, получившееся бесплатное электричество – это результат взаимодействия гальванической пары, при котором влажная земля служила электролитом, принцип похож на работу солевой батарейки. Реальный эксперимент о разнице потенциалов на электродах, забитых в землю, можно посмотреть на видео:
Электричество от земли и нулевого провода
Данное явление тоже возникает не от магнитного поля Земли, а вследствие того, что часть тока «стекает» через заземление в часы наибольшего потребления электроэнергии. Большинству пользователей известно, что напряжение для дома подается через 2 проводника: фазный и нулевой. Если имеется третий проводник, присоединенный к хорошему заземляющему контуру, то между ним и нулевым контактом может «гулять» напряжение до 15 В. Этот факт можно зафиксировать, включив меж контактами нагрузку в виде лампочки на 12 В. И что характерно, проходящий из земли на «ноль» ток абсолютно не фиксируется приборами учета.
Воспользоваться таким бесплатным напряжением в квартире затруднительно, поскольку надежного заземления там не найти, трубопроводы таковым считаться не могут. А вот в частном доме, где априори должен быть заземляющий контур, электричество получить можно. Для подключения применяется простая схема: нулевой провод – нагрузка – земля. Некоторые умельцы даже приспособились сглаживать колебания тока трансформатором и присоединять подходящую нагрузку.
Внимание! Не идите на поводу у «добрых» советчиков, предлагающих вместо нулевого проводника использовать фазный! Дело в том, что при подобном подключении фаза и земля дадут вам 220 В, но прикасаться к заземляющей шине смертельно опасно. Особенно это касается «умельцев», проделывающих подобные вещи в квартирах, присоединяя нагрузку к фазе и батарее. Они создают опасность поражения током для всех соседей.
Заключение
Извлекать электроэнергию из магнитного поля планеты своими руками – нереально. Описанные выше способы – другое дело, но их практическая ценность невелика. Разве что заряжать телефон во время похода, но тогда придется тащить с собой металлические трубы. Касаемо второго способа надо отметить, что напряжение между землей и нулем появляется далеко не всегда, а если и есть, то очень нестабильно. Прочие методы требуют большого количества меди и алюминия при неизвестном результате, о чем честно предупреждает автор установки, изображенной на рисунке:
свободной энергии? Зарядка мобильного телефона руками
Хотите зарядить свой телефон в апокалипсисе? Может быть, вам поможет мой ручной генератор.
DC-DC Boost Module (0.9-5V)
9g 180 ° Micro Servo (1.6kg)
1N4007 — Высоковольтный диод с высоким номинальным током
Конденсатор 100 мкФ Ручной инструмент и изготовление машин
3D-принтер (общий)
История
Эй, это Бен, инди-мейкер из Гонконга.Это проект выходного дня для развлечения и обучения. Я надеюсь, что вы также почерпнете вдохновение из этой статьи.
Проблема: у мобильного телефона всегда кончается сок
Мобильные телефоны стали неотъемлемой частью жизни каждого. Просматривая страницы, играя и обмениваясь сообщениями, вы проводите каждую минуту со своим телефоном. Мы вступаем в эру номофобии, без фобии мобильных телефонов. Кошелек можно оставить дома, но без телефона жить нельзя.
Одна из самых больших проблем при использовании мобильного телефона — это аккумулятор.Вы не можете жить без телефона, а ваш телефон не может жить без аккумулятора. Таким образом, на рынке появляются различные решения Power Bank. Но что, если у вашего мобильного телефона и внешнего аккумулятора одновременно заканчивается заряд батареи.
Представьте, что вы отправляете важное электронное письмо своему клиенту, а телефон не работает. Представьте себе апокалипсис, зомби повсюду. Представьте, что вы Беар Гриллс, и попытаетесь выжить на ничейном острове.
Решение: портативный ручной генератор
В экстренных случаях, как Bear Grylls, нам нужно надежное, доступное и портативное решение для зарядки аккумуляторов.Ради бога, батарейка для монет и батарейка для картошки явно не вариант.
Поэтому я решил сделать ручное зарядное устройство для аккумуляторов. Использование генератора, приводимого в движение человеком, для создания электричества с помощью движения и сил уже имеет долгую историю.
В любом случае, приступим. Вот основные компоненты: серводвигатель, диод, поляризованный конденсатор и модуль повышения напряжения 5 В.
Шаг первый, преобразование серводвигателя в ручной генератор.Разберите серводвигатель. Распаиваем все провода на плате. Спаяйте провода и мотор вместе. Также не забудьте снять все фиксирующие детали с шестерни. После этого вы можете собрать все части вместе.
Шаг второй, спаяйте модуль повышения, диод, емкость и двигатель сервера вместе и превратите их в полную цепь. В этой схеме очень важен диод. Поскольку кривошипно-шатунный механизм может вращаться по часовой стрелке или против часовой стрелки, диод может предотвратить ток в неправильном направлении.
Модуль повышения необходим, потому что серводвигатель может генерировать только 1–3 В, что далеко от стандарта 5 В для зарядки нашего мобильного телефона.
Наконец, необходим корпус, напечатанный на 3D-принтере, для размещения всех электронных компонентов вместе.
Заключение: Нет бесплатной энергии и прекратите телефонную зависимость.
Ва-ла, вот и все. Мобильное зарядное устройство с ручным заводом, способное работать в условиях апокалипсиса. Конечно, вы можете зарядить свой планшет.Вы можете заряжать светодиодную ленту или даже GoPro.
Этот продукт нельзя использовать ежедневно, поскольку для зарядки телефона до 100 процентов требуется не менее нескольких часов запуска. Это просто проект для развлечения и обучения. Так что, пожалуйста, сохраните свое кривошипное зарядное устройство до судного дня. Чтобы ваш телефон не разряжался, когда они вам нужны, почему бы вам не избавиться от зависимости от телефона, скажем, прекратите ненужное обновление вашей ленты Instagram.
Наконец, надеюсь, вам понравится эта статья и удачного дня!
5 способов использования человеческого тела для выработки электроэнергии
Думайте о человеческом теле как о высшем распределенном энергетическом ресурсе.
Из всех возобновляемых видов топлива, пожалуй, нет более устойчивого, чем ваше собственное тело.
Сегодня уже существует несколько способов, которыми человеческое тело может помочь производить электричество — от простых упражнений до человеческих отходов.
Ни одна из этих диковинных технологий не поможет спасти энергосистему в ближайшее время, но интересно представить будущее, в котором ваши органы смогут управлять суперкомпьютером в вашем мозгу.
1. КровотокКоманда швейцарских исследователей во главе с инженером-биомедицином Алоисом Пфеннигером показывает миру многообещающую картину будущего: микротурбины, имплантированные в артерии человека.
Микротурбины работают так же, как гидроэлектростанции, используя поток крови для выработки электроэнергии. Из трех турбин, протестированных командой Пфеннигера, самая производительная генерирует около 800 микроватт энергии — намного больше, чем необходимо для работы кардиостимулятора.
«Сердце вырабатывает около 1 или 1,5 Вт гидравлической мощности, а мы хотим взять, может быть, один милливатт», — сказал Пфеннигер. «Для кардиостимулятора требуется всего около 10 микроватт».
Сегодня варианты использования микротурбин ограничиваются питанием датчиков артериального давления, насосов для доставки лекарств и нейростимуляторов — всем из которых требуется источник питания.В будущем возможности еще более диковинные.
2. СтупенькиЛюди много ходят, так почему бы не уловить эти усилия и не использовать их для выработки электроэнергии? Такова первоначальная мысль Pavegen, стартапа, который хочет, чтобы его плитки, приводимые в движение следами, стали путем в будущее.
В зависимости от того, насколько сильно вы шагаете, один шаг по плитам компании может произвести от одного до семи ватт мощности. По словам Павегена, этого электричества недостаточно для питания дома, но достаточно, чтобы зажечь уличный светодиод на 30 секунд.
Однако для Pavegen использование плитки выходит за рамки возобновляемых источников энергии. Плитки стартапа могут предоставить ранее трудные для сбора данные о привычках людей.
«Наша цель — получить ту же цену, что и обычные полы», — сказал основатель и генеральный директор Лоуренс Кембал-Кук. «И тогда это может быть на любом нормальном этаже в мире».
3. УпражнениеВ спортзалах по всей стране есть велотренажеры, эллиптические тренажеры и степперы.А теперь представьте, если бы каждый из них производил электричество.
Некоторые уже делают. Придавая понятие «человеческая сила» совершенно новое значение, такие стартапы, как ReRev, Green Revolution и Human Dynamo, делают упражнения более экологически безопасными, оснастив эти машины для производства электроэнергии.
Некоторые, например ReRev, подключают эллиптические тренажеры с генераторами постоянного тока к центральному блоку с инвертором, который преобразует производимую мощность в переменный ток и отправляет ее обратно в здание и сеть. Некоторые, например Green Revolution, решили подключить велотренажеры к батареям.Другие, такие как Human Dynamo, построили индивидуальный стационарный велосипед с «ручными кривошипами» и педалями, которые вращают маховик, связанный с генератором, который может подключаться к нескольким велосипедам одновременно.
Но эти машины еще не вырабатывают энергосберегающее количество энергии — в среднем они могут вырабатывать от 50 до 150 ватт в час, в то время как велосипедист высокого уровня может генерировать более 400 ватт за тот же период.
Расчеты показывают, что эти типы машин при 5 часах ежедневного использования при 100 Вт в час будут производить только 183 киловатт-часа в год — или около 18 долларов электроэнергии.
«Я надеюсь, что эта технология будет в каждом оборудовании через 10 или 15 лет», — сказал Адам Бозель, владелец Green Microgym. «Несколько ватт от каждого из нас, пока мы потеем, могут в сумме дать что-то значительное».
4. Тепло тела
Исследователи из нескольких известных институтов, включая Технологический институт Джорджии, разрабатывают носимые ткани, которые могут генерировать электричество.
Дэвид Кэрролл, профессор физики Университета Уэйк Форест, является одним из таких исследователей.Он создал Power Felt — гибкую ткань, которая может проводить электричество и обеспечивать теплоизоляцию.
Power Felt имеет несколько вариантов использования, но был предназначен для улавливания тепла тела и повторного использования его для зарядки телефонов.
«Из тела, производящего от 100 до 120 Вт мощности, вы могли бы получить от этого один или два ватта», — сказал Кэрролл. «Если вы сделаете из этого одежду, этого достаточно, чтобы начать заниматься электроникой, такой как мобильные телефоны и тому подобное.”
Кэрролл оценивает, что производство такого количества Power Felt, достаточного для покрытия вашего смартфона, будет стоить 1 доллар.
«Пока я разговаривал с вами, задняя часть моего телефона стала горячей», — сказал он Bloomberg. «Наш кусок ткани за 1 доллар даст вам такое же усиление, как и батарея за 50 долларов.
5. Моча и кал
Мы думали о том, чтобы сделать этот номер один и два в нашем списке.
Шутки в сторону, есть несколько многообещающих способов использования энергии для отходов жизнедеятельности человека. По словам китайских исследователей, которые разработали туалет, который помогает производить удобрения и электричество, человеческие фекалии могут перевариваться в биореакторе для выделения биогаза.Кейтлин Батлер, профессор экологической инженерии Массачусетского университета, разработала яму для микробных топливных элементов. В отличие от обычной уборной с выгребной ямой, здесь компостные отходы окисляются в анодной камере. Затем электроны высвобождаются и проходят через цепь, несущую нагрузку, которая вырабатывает электричество.
Есть также способ использовать человеческую мочу для выработки электроэнергии. Получатель гранта в 500000 фунтов стерлингов от Фонда Билла и Мелинды Гейтс, исследовательской группы, возглавляемой доктором Дж.Иоаннис Иеропулос, профессор Университета Западной Англии в Бристоле, разработал еще один микробный топливный элемент, но он работает на моче.
«Прелесть этого источника топлива в том, что мы не полагаемся на неустойчивую природу ветра или солнца», — сказал Иеропулос. Электроэнергия, работающая на урине, «настолько экологична, насколько это возможно».
«Мы очень взволнованы потенциалом этой работы», но необходимы дополнительные исследования, — добавил он. «Пока что разработанный нами микробный топливный блок питания генерирует достаточно энергии, чтобы можно было отправлять SMS-сообщения, просматривать веб-страницы и делать короткие телефонные звонки по телефону.”
16 забавных экспериментов с электричеством и мероприятий для детей
Электричество окружает нас повсюду, поэтому мы склонны воспринимать это как должное. Однако это увлекательный предмет для детей, поэтому им понравятся эти эксперименты с электричеством и занятия. Возможно, вам придется приобрести несколько простых расходных материалов для некоторых из этих видов деятельности, но вы сможете использовать их повторно год за годом. Практический опыт, который получают дети, оправдывает дополнительные усилия.
Напоминаем, что WeAreTeachers может получать долю продаж по ссылкам на этой странице.Спасибо за поддержку!
1. Начните с диаграммы привязки
Статическое электричество — это введение для большинства детей в эту концепцию, и оно прекрасно переходит в электрическую энергию и схемы. Эти красочные диаграммы привязок помогут вам научить и тому и другому.
Подробнее: What I Have Learned Teaching / Miller’s Science Space
2. Изгибание воды статическим электричеством
Большинство экспериментов со статическим электричеством проходят быстро и легко, и каждый может их попробовать дома.Это отличный пример: зарядите расческу, потерев ею голову, а затем используйте ее, чтобы «согнуть» струю воды из крана.
Подробнее: Frugal Fun 4 Boys and Girls
3. Разделить соль и перец «волшебной» ложкой
Этот эксперимент со статическим электричеством работает, потому что перец легче соли, что позволяет быстрее прыгнуть на электрически заряженную пластиковую ложку. Так круто!
Подробнее: Science Kiddo
4.Переместите пузырь с помощью воздушного шара
Воздушные шары — это интересный способ рассказать о статическом электричестве. Скомбинируйте их с пузырьками для практического занятия, которое понравится студентам!
Подробнее: Create Play Travel
5. Взмахните крыльями бабочки
Кстати о воздушных шарах. Попробуйте использовать их, чтобы помочь бабочке взмахнуть крыльями из папиросной бумаги. Лица малышей загораются, когда они видят, как оживает бабочка.
Подробнее: I Heart Crafty Things
6.Заставьте прыгающую слизь с помощью статического электричества
Поднимите ваши эксперименты со статическим электричеством на ступень выше, смешав порцию «слизи» из кукурузного крахмала, а затем заставив ее «подпрыгнуть» к воздушному шару. Удивительный!
Подробнее: Экономные развлечения для мальчиков и девочек
7. Собрать схемы из пластилина
Когда вы будете готовы исследовать электрическую энергию, начните со схем для лепки. Вам понадобится батарейный отсек и мини-светодиодные лампы, которые недороги и доступны на Amazon.Смешайте свои собственные партии изоляционного и проводящего пластилина, используя информацию по ссылке.
Подробнее: Science Sparks
8. Постройте классические часы из картофеля
Попробуйте различные фрукты и овощи (лимоны — еще один популярный выбор) для этих классических экспериментов с электричеством. Вот набор часов, который вам понадобится.
Подробнее: Kidz World
9. Узнать, проводит ли вода электричество
Мы всегда говорим детям выходить из воды при первых признаках грозы, поэтому используйте эту демонстрацию, чтобы помочь им понять, почему.Вам понадобятся провода с зажимами из крокодиловой кожи, мини-светодиодные лампы и батарейки-таблетка.
Подробнее: Воспитание для новичков
10. Собери аккумулятор из копеек
Зажгите лампочку, не вставляя ничего в розетку и не используя батарею! Вместо этого используйте провода с зажимами из крокодиловой кожи, мини-светодиодные лампы, пенни и алюминиевую фольгу для выработки электроэнергии.
Подробнее: 123Homeschool4Me
11. Поднимите волшебные палочки
Люмос! Если ваши дети увлечены Гарри Поттером и миром магии, им понравится этот электрический проект, который превращает обычные палочки в волшебные палочки! Узнайте, как это сделать, по ссылке.
Подробнее: Babble Dabble Do
12. Сыграйте в игру «Сделай сам с устойчивой рукой»
Подобные эксперименты с электричеством идеально подходят для изучения идеи открытых и замкнутых цепей. Кроме того, детям будет очень весело играть с ними!
Подробнее: Left Brain Craft Brain
13. Медные пластинчатые монеты, использующие электричество
Все мы знаем, что электричество освещает комнату и приводит в действие телефоны, компьютеры и даже автомобили.Но что еще он может сделать? Этот эксперимент по нанесению гальванических покрытий — настоящий фурор.
Подробнее: KiwiCo Corner
14. Создайте фонарик для каталожной карточки
Этот фонарик, сделанный своими руками, действительно включается и выключается! Требуются только учетные карточки, алюминиевая фольга, мини-светодиодные лампы и батарейки.
Подробнее: Mystery Science
15. Покрутите однополярных танцоров
Эти милые маленькие танцующие танцоры — фантастическая демонстрация униполярного мотора.Помимо базовых батареек AA вам потребуются неодимовые магниты и медный провод.
Подробнее: Babble Dabble Do
16. Инженер электромагнит
Превратите обычный гвоздь в магнит с батареей и проводом. Это волшебство электромагнитов!
Подробнее: Steve Spangler Science
Любите эти эксперименты и занятия с электричеством? Просмотрите 50 простых научных экспериментов, которые можно провести с уже имеющимся у вас материалом.
Plus, превратите маглов в волшебников с помощью научных экспериментов о Гарри Поттере.
Практическое руководство по сдерживанию ветра: Бартманн, Дэн, Финк, Дэн, Сагрилло, Мик: 9780981920108: Amazon.com: Книги
«Хорошо продуманное сочетание теории и практической информации для всех, кто хочет построить тихую, эффективную и экономичную ветряную турбину, чтобы добиться большей энергетической независимости и уменьшить свой углеродный след. Эти ребята знают свое дело и знают, как передать его в ясная, лаконичная, понятная и юмористическая мода.»- Дэн Чирас, доктор философии, автор книг» Энергия ветра «,» Руководство домовладельца по возобновляемым источникам энергии «,» Солнечный дом «,» Зеленый дом «и др.» Если вы когда-нибудь думали, что ветер может быть столь же продуктивным, раздражает, возьмите эту замечательную книгу, примените ее четкие принципы и процедуры и приготовьте ветряную турбину. В своей умной и забавной манере Дэн и Дэн показывают вам, как привести в действие ваш дом с помощью тех же сил, которые сотрясают оконные стекла. Купите ее — это единственная книга такого рода на планете Земля! »- Рекс Юинг, автор книг« Власть с природой »,« Получил солнце?
«Otherpower Dans и их команда узнают во сне о создании хороших ветряных генераторов больше, чем остальные из нас узнают при дневном свете. Если вы хотите иметь возможность создавать простые, надежные и производительные ветряные турбины в состоянии бодрствования или сна, купите эта книга!» — Ян Вуфенден, старший редактор журнала Home Power; Координатор Северо-Западного региона и Коста-Рики, Solar Energy International, нарушитель энергии ветра.
«Если вы когда-либо думали, что ветер может быть столь же продуктивным, сколь и раздражающим, возьмите эту замечательную книгу, примените ее четкие принципы и процедуры и приготовьте ветряную турбину.В своей умной и забавной манере Дэн и Дэн показывают вам, как привести в действие ваш дом с помощью тех же сил, которые сотрясают оконные стекла. Купите ее — это единственная книга такого рода на планете Земля! »- Рекс Юинг, автор книг« Власть с природой »,« Получил солнце? и их команда во сне узнает о создании хороших ветрогенераторов больше, чем остальные из нас узнают при дневном свете. Если вы хотите построить простые, прочные и производительные ветряные турбины, бодрствующие или спящие, купите эту книгу! »- Ян Вуфенден, старший редактор журнала Home Power; координатор по Северо-Западу и Коста-Рике, Solar Energy International, сторонник энергии ветра .
«Если вы когда-либо думали, что ветер может быть столь же продуктивным, сколь и раздражающим, возьмите эту замечательную книгу, примените ее четкие принципы и процедуры и создайте ветряную турбину. Их умным и забавным способом Дэн и Дэн покажет вам, как привести в действие ваш дом с помощью тех же сил, которые сотрясают оконные стекла. Купите ее — это единственная книга такого рода на планете Земля! » —Рекс Юинг, автор книги «Власть с природой», «Есть солнце?» Занимайтесь солнечными батареями, водородными горячими вещами, классной наукой и т. Д.
«Другая сила Даны и их команда узнают во сне о построении хороших ветрогенераторов больше, чем остальные из нас узнают при дневном свете.Если вы хотите построить простые, прочные и производительные ветряные турбины, бодрствующие или спящие, купите эту книгу! »- Ян Вуфенден, старший редактор журнала Home Power; координатор по Северо-Западу и Коста-Рике, Solar Energy International, сторонник энергии ветра .
Авторы Дэн Бартманн и Дэн Финк в течение многих лет строили ветряные турбины, чтобы помочь обеспечить энергией удаленное, автономное горное сообщество, в котором они оба живут. Они проводят практические семинары по строительству ветряных турбин для студентов в течение 4 лет, а также их известный веб-сайт Otherpower.com — одно из самых популярных мест в Интернете, посвященных возобновляемым источникам энергии для дома.
Отключение электроэнергии — что делать?
Версия Adobe Acrobat (PDF 895 КБ)
Наши партнеры
Эта публикация была подготовлена Службой общественной безопасности Канады в сотрудничестве с: Канадской ипотечной и жилищной корпорацией (CMHC), Канадским Красным Крестом и Скорой помощью Св. Иоанна.
Электронная версия этой брошюры доступна на сайте www.GetPrepared.ca.
Обратите внимание: публикации не доступны в обычном печатном формате.
© Ее Величество Королева Справа Канады 2011
Кат. №: PS48-9 / 3-2011
ISBN: 978-1-100-17947-6
Введение
Большинство отключений электроэнергии прекращаются почти сразу после их начала, но некоторые могут длиться намного дольше — до дней или даже недель. Перебои в подаче электроэнергии часто вызваны ледяным дождем, мокрым снегом и / или сильным ветром, которые повреждают линии электропередач и оборудование.Резкие похолодания или волны тепла также могут вызвать перегрузку системы электроснабжения.
Во время отключения электроэнергии вы можете остаться без отопления / кондиционирования, освещения, горячей воды или даже без проточной воды. Если у вас есть только беспроводной телефон, вы также останетесь без телефонной связи. Если у вас нет радиоприемника с батарейным питанием или заводного радиоприемника, у вас может не быть возможности следить за новостными трансляциями. Другими словами, вы можете столкнуться с серьезными проблемами. Каждый несет ответственность за защиту своего дома и своей семьи.
Вы можете значительно уменьшить последствия отключения электроэнергии, если заранее подготовитесь. Это включает три основных шага:
- Узнайте, что делать до, во время и после отключения электроэнергии.
- Составьте план неотложной помощи в семье , чтобы все знали, что делать и куда обращаться в случае возникновения чрезвычайной ситуации.
- Приобретите комплект для экстренной помощи , чтобы вы и ваша семья могли быть автономными в течение как минимум 72 часов во время отключения электроэнергии.
Планирование отключения электроэнергии также поможет подготовиться к другим типам чрезвычайных ситуаций. Прочитав это руководство, храните его в удобном месте, например, в своей аптечке.
Шаг 1. Знайте риски и будьте готовы
Чтобы подготовиться к отключению электроэнергии, вы должны знать риски, характерные для вашего сообщества и вашего региона, чтобы лучше подготовиться. Чтобы узнать, какие опасности существуют в вашем регионе, посетите раздел «Знайте о рисках» GetPrepared.CA веб-сайт.
Подготовка дома
- Можно установить неэлектрическую резервную плиту или обогреватель. Выбирайте нагревательные блоки, которые не зависят от электродвигателя, электрического вентилятора или какого-либо другого электрического устройства. Важно обеспечить надлежащую вентиляцию печи или каменки с указанным типом дымохода. Никогда не подключайте два отопительных агрегата к одному дымоходу одновременно.
- Если у вас дровяной камин, очищайте дымоход каждую осень перед использованием и для устранения скоплений креозота, которые могут воспламениться и вызвать пожар в дымоходе.
- Если резервный отопительный агрегат будет использовать обычную подачу нефти или газа в доме, он должен быть подключен к запорным клапанам сертифицированным специалистом.
- Прежде чем рассматривать возможность использования аварийного генератора во время отключения электроэнергии, проконсультируйтесь с дилерами или производителями печей, приборов и осветительных приборов относительно требований к питанию и надлежащих рабочих процедур.
Люди с ограниченными возможностями или другие лица, нуждающиеся в помощи
Подумайте, как на вас может повлиять отключение электроэнергии, в том числе:
- Ваш путь эвакуации — без лифта (если есть)
- Планирование резервного источника питания для основного медицинского оборудования
- Держите под рукой фонарик и мобильный телефон, чтобы подать сигнал о помощи
- Создание сети самопомощи, чтобы помочь и проверить вас во время чрезвычайной ситуации
- Регистрация в программе медицинского оповещения, которая будет сигнализировать о помощи, если вы обездвижены
- Ведение списка учреждений, обеспечивающих жизнеобеспечение или лечение
- Ведение списка заболеваний и лечения
- Если вы живете в квартире, сообщите администрации, что вам может потребоваться помощь, чтобы остаться в квартире, или что вас необходимо эвакуировать в случае отключения электроэнергии.Это позволит управляющему имуществом спланировать и принять необходимые меры от вашего имени.
Во время отключения электроэнергии
- Сначала проверьте, ограничено ли отключение электричества вашим домом. Если электричество ваших соседей все еще включено, проверьте панель автоматического выключателя или блок предохранителей. Если проблема не в выключателе или предохранителе, проверьте рабочие провода, ведущие к дому. Если они явно повреждены или лежат на земле, отойдите на расстояние не менее 10 метров и сообщите об этом в органы электроснабжения.Держите этот номер вместе с другими номерами службы экстренной помощи рядом с телефоном.
- Если у ваших соседей также пропало электричество, сообщите об этом в органы электроснабжения.
- Выключите все инструменты, бытовую технику и электронное оборудование и установите термостаты для системы отопления дома на минимум, чтобы предотвратить повреждение от скачка напряжения при восстановлении подачи электроэнергии. Кроме того, подача электроэнергии может быть легче восстановлена, когда электрическая система не подвергается большой нагрузке.
- Выключите все фонари, кроме одного внутри и одного снаружи, чтобы и вы, и гидросистемы снаружи знали, что электричество было восстановлено.
- Не открывайте морозильную камеру или холодильник без крайней необходимости. Полная морозильная камера будет хранить продукты замороженными от 24 до 36 часов, если дверца остается закрытой.
- Никогда не используйте угольные или газовые мангалы, оборудование для обогрева кемпинга или домашние генераторы в помещении. Они выделяют окись углерода. Окись углерода может вызвать проблемы со здоровьем и опасна для жизни, поскольку вы не можете ее увидеть или почувствовать.
- Используйте подходящие подсвечники. Никогда не оставляйте зажженные свечи без присмотра и храните их в недоступном для детей месте.Всегда гасите свечи перед сном.
- Слушайте радио с батарейным питанием или заводное управление, чтобы получить информацию о сбоях и советы властей.
- Убедитесь, что в вашем доме есть исправный детектор угарного газа. Если он подключен к электросети дома жестко, убедитесь, что он имеет резервное питание от батареи.
- Защитите чувствительные электрические приборы, такие как телевизоры, компьютеры и DVD-плееры, с помощью защитной панели питания.
Использование бытовых генераторов
Домашние генераторы удобны для резервного электроснабжения в случае отключения электричества, но их следует использовать только в соответствии с рекомендациями производителя.Резервный генератор может быть подключен к электрической системе вашего дома только через утвержденную распределительную панель и выключатель, которые были установлены квалифицированным электриком. Никогда не подключайте генератор к розетке, так как это может привести к серьезным травмам, если ток, вырабатываемый домашним генератором, возвращается в электрические линии и преобразуется в более высокое напряжение. Это может поставить под угрозу жизнь сотрудников коммунального предприятия, работающих над восстановлением электроэнергии.
Для безопасной эксплуатации генератора:
- Следуйте инструкциям производителя.
- Убедитесь, что генератор работает на открытом воздухе в хорошо вентилируемых условиях, вдали от дверей или окон, чтобы предотвратить попадание выхлопных газов в дом.
- Подключайте осветительные приборы и приборы непосредственно к генератору. Если необходимо использовать удлинители, убедитесь, что они имеют соответствующий номинал и одобрены CSA.
Если вам необходимо эвакуироваться
Эвакуация более вероятна в зимние месяцы, когда резкое падение температуры может сделать дом непригодным для проживания.Несмотря на то, что дом может быть поврежден из-за низких температур, главная угроза для водопровода. Если используется резервная система отопления, убедитесь, что никакая часть водопроводной системы не может замерзнуть.
Если необходимо эвакуировать дом, защитите его, приняв следующие меры:
- Выключите главный выключатель или выключатель щита выключателя или блока питания.
- Перекройте водопровод на входе в дом.Защитите клапан, впускную трубу и расходомер или насос одеялами или изоляционным материалом.
- Слейте воду из водопроводной системы. Начиная с крыши дома, откройте все краны и несколько раз спустите воду из туалетов. Идите в подвал и откройте сливной кран. Слейте воду из резервуара с горячей водой, подключив шланг к сливному крану резервуара и направив его в слив в подвальном этаже.
- Примечание. Если вы опорожняете резервуар для воды, работающий на газе, контрольный индикатор должен быть выключен — позвоните местному поставщику газа, чтобы снова зажечь его.
- Отсоединить шланги стиральной машины и слив.
- Не беспокойтесь о небольшом количестве воды, попавшей в горизонтальные трубы. Добавьте небольшое количество гликоля или антифриза в воду, оставшуюся в унитазе, раковине и сифоне для ванны.
- Если ваш дом защищен от грунтовых вод водоотливным насосом, уберите ценные вещи с цокольного этажа в случае затопления.
После того, как власть вернется
- Не входите в затопленный подвал, если вы не уверены, что питание отключено.
- Не используйте затопленные приборы, электрические розетки, распределительные коробки или панели предохранителей, пока они не будут проверены и очищены квалифицированным электриком.
- Заменить дымоход (если был снят) и отключить подачу топлива на резервный нагревательный элемент.
- Включите главный электрический выключатель (перед этим убедитесь, что бытовые приборы, электрические обогреватели, телевизоры, микроволновые компьютеры и т. Д. Были отключены от сети, чтобы предотвратить повреждение от скачка напряжения).
- Дайте электрической системе возможность стабилизироваться перед повторным подключением инструментов и приборов.Сначала включите термостаты системы отопления, а через пару минут снова включите холодильник и морозильник. Подождите 10–15 минут перед повторным подключением всех других инструментов и приспособлений.
- Закройте сливной кран в подвале.
- Включите подачу воды. Сначала закройте нижние клапаны / краны и дайте воздуху выйти из верхних кранов.
- Перед включением питания убедитесь, что водонагреватель заполнен.
- Проверить запасы продуктов питания в холодильниках, морозильниках и шкафах на наличие признаков порчи.Если дверца морозильной камеры была закрыта, продукты должны оставаться замороженными от 24 до 36 часов, в зависимости от температуры. Когда пища начинает размораживаться (обычно через два дня), ее следует приготовить; в противном случае его следует выбросить или переработать в компост.
- В качестве общей меры предосторожности храните пакет с кубиками льда в морозильной камере. Если вы вернетесь домой после периода отсутствия, а лед растает и снова замерзнет, есть большая вероятность, что еда испорчена. Если сомневаетесь, выбросьте!
- Сбросьте свои часы, автоматические таймеры и будильники.
- Пополните запасы аварийной аптечки, чтобы припасы снова были там, когда они понадобятся.
Шаг 2. Составьте план действий на случай чрезвычайной ситуации
Каждой канадской семье нужен план действий в чрезвычайных ситуациях. Это поможет вам и вашей семье узнать, что делать в случае возникновения чрезвычайной ситуации. Помните, ваша семья может не быть вместе, когда отключится электричество.
Начните с обсуждения того, что может случиться и что вам следует делать дома, в школе или на работе в случае возникновения чрезвычайной ситуации.Чтобы подготовиться, заранее составьте список того, что нужно сделать. Храните важные семейные документы, такие как свидетельства о рождении, паспорта, завещания, финансовые документы, страховые полисы и т. Д. В водонепроницаемых контейнерах. Определите подходящее контактное лицо за пределами города, которое может выступить в качестве центрального контактного лица в чрезвычайной ситуации.
Записывайте и выполняйте свой план со всей семьей не реже одного раза в год. Убедитесь, что у всех есть копия и держите ее под рукой.
Для получения дополнительной информации о составлении плана действий на случай чрезвычайной ситуации позвоните в 1 800 O-Canada или посетите GetPrepared.ca, чтобы загрузить или заполнить план действий на случай чрезвычайной ситуации онлайн.
Шаг 3. Получите аварийный комплект
В экстренной ситуации вам понадобятся некоторые предметы первой необходимости. Возможно, вам придется обойтись без электричества или водопроводной воды. Будьте готовы быть самодостаточными как минимум 72 часа.
Возможно, у вас уже есть некоторые из этих предметов, например, фонарик, радио на батарейках, еда и вода. Главное — убедиться, что они организованы и их легко найти.Сможете ли вы найти свой фонарик в темноте?
Убедитесь, что ваш комплект легко переносить. Храните его в рюкзаке, спортивной сумке или чемодане на колесиках в легкодоступном и доступном месте, например, в шкафу в прихожей. Убедитесь, что все в доме знают, где находится аварийная аптечка.
Основной аварийный комплект
- Вода — не менее двух литров воды на человека в день. Включите небольшие бутылки, которые можно легко переносить в случае заказа на эвакуацию
- Еда, которая не портится, например консервы, энергетические батончики и сушеные продукты (не забывайте заменять еду и воду один раз в год)
- Ручной консервный нож
- Заводной фонарик или фонарик на батарейках (и дополнительные батарейки)
- Заводское радио или радио на батарейках (и дополнительные батареи)
- Аптечка
- Особые предметы, такие как рецептурные лекарства, детские смеси и оборудование для людей с ограниченными возможностями
- Дополнительные ключи от машины и дома
- Наличные деньги мелкими купюрами, такими как купюры на 10 долларов (также можно использовать дорожные чеки) и сдача для таксофонов
- Копия вашего плана действий в чрезвычайных ситуациях и контактная информация
Совет. Вы можете убедиться, что у вас дома есть стационарный и проводной телефон, так как большинство беспроводных телефонов не будут работать во время отключения электроэнергии.
Рекомендуемые дополнительные позиции
- Свечи и спички или зажигалка (не оставляйте свечи без присмотра. Поместите свечи в прочные контейнеры и тушите их перед сном)
- Смена одежды и обуви для каждого члена домохозяйства
- Спальный мешок или теплое одеяло для каждого члена семьи
- Свисток (на случай, если нужно привлечь внимание)
- Мешки для мусора для личной гигиены
- Туалетная бумага и прочие предметы личной гигиены
- Защитные перчатки
- Основные инструменты (молоток, плоскогубцы, гаечный ключ, отвертки, крепежные детали, защитные перчатки)
- Маленькая топливная печь и топливо (следуйте инструкциям производителя и храните надлежащим образом)
- Два дополнительных литра воды на человека в день для приготовления пищи и уборки.
Вы также можете приобрести готовый комплект для оказания экстренной помощи в Канадском Красном Кресте на сайте www.redcross.ca
.ресурсов
Национальные ресурсы
Public Safety Canada — Другие публикации:
- Землетрясения — Что делать?
- Готовность сельскохозяйственных животных к чрезвычайным ситуациям
- Наводнения — Что делать?
- Сильные штормы — что делать?
- Руководство по готовности к чрезвычайным ситуациям
- Руководство по готовности к чрезвычайным ситуациям для людей с ограниченными возможностями / особыми потребностями
Для получения дополнительной информации о готовности к чрезвычайным ситуациям посетите GetPrepared.ca или подпишитесь на @Get_Prepared в Twitter.
Провинциальные и территориальные ресурсы
Чтобы получить региональную или местную информацию о готовности к чрезвычайным ситуациям, свяжитесь с вашей организацией по управлению чрезвычайными ситуациями следующим образом:
Альберта
Агентство по чрезвычайным ситуациям Альберты
Телефон: (780) 422-9000 / бесплатный: 310-0000
www.aema.alberta.ca
Британская Колумбия
Управление чрезвычайными ситуациями BC
Телефон: (250) 952-4913 / Экстренная помощь: 1-800-663-3456
http: // www2.gov.bc.ca/gov/content/safety/emergency-preparedness-response-recovery/preparedbc
Манитоба
Организация по чрезвычайным ситуациям Манитобы
Телефон: (204) 945-4772 / бесплатный: 1-888-267-8298
www.manitobaemo.ca
Нью-Брансуик
Организация по чрезвычайным ситуациям Нью-Брансуика
Телефон: (506) 453-2133 / Бесплатная круглосуточная линия: 1-800-561-4034
https: // www2.gnb.ca/content/gnb/en/departments/emo.html
Ньюфаундленд и Лабрадор
Пожарные и аварийные службы Ньюфаундленда и Лабрадора
Телефон: (709) 729-3703
https://www.gov.nl.ca/fes/
Северо-Западные территории
Организация по чрезвычайным ситуациям Северо-Западных территорий
Телефон: (867) 873-7538 / круглосуточная линия: (867) 920-2303
http://www.maca.gov.nt.ca/en/services/emergency-preparedness
Новая Шотландия
Офис управления чрезвычайными ситуациями Новой Шотландии
Телефон Бесплатная круглосуточная линия: 1-866-424-5620
https://beta.novascotia.ca/government/emergency-management-office
Нунавут
Управление чрезвычайными ситуациями Нунавута
Телефон: (867) 975-5403 / Бесплатная круглосуточная линия: 1-800-693-1666
https://www.gov.nu.ca/community-and-government-services/information/nunavut-emergency- менеджмент-0
Онтарио
Управление начальника пожарной охраны и управления чрезвычайными ситуациями
Телефон: (647) 329-1100 / Бесплатная круглосуточная линия: 1-800-565-1842
www.ontario.ca/beprepared
Остров Принца Эдуарда
Организация по чрезвычайным ситуациям острова Принца Эдуарда
Телефон: (902) 894-0385 / в нерабочее время: (902) 892-9365
www.peipublicsafety.ca
Квебек
Квебек — Ministère de la sécurité publique
Телефон (бесплатный): 1-866-644-6826
Общая информация (Службы Квебека): 1-877-644-4545
http: // www.securitepublique.gouv.qc.ca/en.html
Саскачеван
Организация по чрезвычайным ситуациям Саскачевана
Телефон: (306) 787-9563
https://www.saskatchewan.ca/residents/environment-public-health-and-safety/disaster-prevention
Юкон
Юконская организация по чрезвычайным ситуациям
Телефон: (867) 667-5220
Бесплатный звонок (в пределах Юкона): 1-800-661-0408
https: // yukon.ca / en / Emergencies-and-Safety
- Дата изменения:
Обзор доказательств
Mayo Clin Proc. 2012 Авг; 87 (8): 791–798.
Cunrui Huang
a Школа общественного здравоохранения и Институт здравоохранения и биомедицинских инноваций, Технологический университет Квинсленда, Брисбен, Квинсленд, Австралия
b Центр по контролю и профилактике заболеваний провинции Гуандун и Институт общественности Гуандун Health, Гуанчжоу, провинция Гуандун, Китай
Wenjun Ma
b Центр по контролю и профилактике заболеваний провинции Гуандун и Институт общественного здравоохранения Гуандун, Гуанчжоу, провинция Гуандун, Китай
Susan Stack
c Stack Masula Pty Ltd, Брисбен, Квинсленд, Австралия
a Школа общественного здравоохранения и Институт здравоохранения и биомедицинских инноваций, Технологический университет Квинсленда, Брисбен, Квинсленд, Австралия
b Центр по контролю и профилактике заболеваний провинции Гуандун и Гуандунский институт общественного здравоохранения, Гуанчжоу, Гуандун Про Винс, Китай
c Stack Masula Pty Ltd, Брисбен, Квинсленд, Австралия
⁎ Для корреспонденции: Обращение к Cunrui Huang, MMed, MSPH, Школа общественного здравоохранения и Институт здравоохранения и биомедицинских инноваций, Университет Квинсленда. Technology, Victoria Park Rd, Kelvin Grove, Брисбен, Квинсленд 4059, Австралия moc.liamtoh @ iurnucgnauh Авторские права © 2012 Опубликовано Elsevier Inc. от имени Mayo Foundation for Medical Education and Research. Эта статья цитировалась в других статьях в PMC.Abstract
Передача бактерий чаще происходит через влажную кожу, чем через сухую; поэтому правильная сушка рук после мытья должна быть неотъемлемой частью процесса гигиены рук в сфере здравоохранения. В этой статье систематизирован обзор исследований гигиенической эффективности различных методов сушки рук.В апреле 2011 г. был проведен поиск литературы с использованием электронных баз данных PubMed, Scopus и Web of Science. Использовались следующие поисковые запросы: сушилка для рук и сушилка для рук . Поиск ограничивался статьями, опубликованными на английском языке с января 1970 г. по март 2011 г. В обзор было включено двенадцать исследований. Эффективность сушки рук включает скорость сушки, степень сухости, эффективное удаление бактерий и предотвращение перекрестного загрязнения. Этот обзор не нашел согласия относительно относительной эффективности электрических осушителей воздуха.Однако большинство исследований показывают, что бумажные полотенца могут эффективно сушить руки, эффективно удалять бактерии и вызывать меньшее загрязнение среды туалета. С точки зрения гигиены бумажные полотенца превосходят электрические сушилки. Бумажные полотенца следует рекомендовать в местах, где гигиена имеет первостепенное значение, например, в больницах и клиниках.
Пандемия свиного гриппа A (h2N1) 2009 г. напомнила медицинским работникам и общественности о важности гигиены рук для предотвращения распространения болезней.1-8 Эффективность гигиены рук в борьбе с инфекциями была признана после наблюдения Земмельвейса в 1847 году, согласно которому мытье рук снижает количество смертей среди женщин с послеродовой лихорадкой.9 На протяжении веков мытье рук считалось наиболее важной мерой для снизить бремя инфекций, связанных с оказанием медицинской помощи.10-12
Под мытьем рук понимается мытье рук простым или противомикробным мылом и водой.13 На практике это может значительно варьироваться от кратковременного ополаскивания рук до интенсивной очистки.При надлежащем мытье рук сообщалось о значительном снижении показателей инфекционных заболеваний в различных учреждениях, таких как медицинские учреждения, 14,15 пищевая промышленность, 16,17 детских садов, 18 школ, 19–21 и все общественные и домашние ситуации.1,22,23 Однако до сих пор большое количество исследований было сосредоточено на таких темах, как методы мытья рук, 24 выбор средств для мытья рук и обращение с ними, 25-27 и способы улучшения качества рук соблюдение гигиены медицинскими работниками.28-31 Меньше известно о роли сушки рук после стирки и об относительной эффективности различных методов сушки рук в снижении загрязнения.
Правильная сушка рук должна быть важным компонентом эффективных процедур гигиены рук.11,13 Коутс и др. 32 сообщили, что мытье рук водой с мылом или только водой в сочетании с сушкой на бумажных полотенцах может эффективно удалить бактерии с рук. Однако, если руки встряхнуть насухо после мытья, некоторые бактерии могут остаться.Патрик и др. 33 исследовали взаимосвязь между количеством остаточной воды, оставшейся на руках, и уровнями бактериальной транслокации. Передача бактерий чаще происходила от влажных рук, чем от сухих. Merry et al34 также подтвердили важную роль остаточной воды на руках в уровне загрязнения, связанного с прикосновением или контактом.
Хотя исследования сообщают о важности тщательной сушки рук после мытья, роль сушки рук широко не пропагандировалась, и ее значение для гигиены рук и инфекционного контроля, по-видимому, не учитывалось.35 Отсутствие внимания к этому аспекту может свести на нет пользу от тщательного мытья рук в здравоохранении. До сих пор было проведено мало исследований, чтобы изучить вклад, который правильная сушка рук вносит в общую эффективность методов гигиены рук. Цели этой статьи — предоставить систематический обзор исследований, посвященных изучению эффективности различных методов сушки рук, и дать рекомендации для будущих исследований.
Методы
В апреле 2011 года был проведен обширный поиск литературы с использованием электронных баз данных PubMed, Scopus и Web of Science.Поиск был ограничен статьями, опубликованными на английском языке с января 1970 года по март 2011 года. В качестве поисковых слов использовались следующие термины: сушилка для рук и сушилка для рук .
Нашей целью было проанализировать гигиеническую эффективность различных методов сушки рук, а затем рекомендовать лучший вариант сушки рук для медицинских работников. Для отбора статей использовались два критерия включения. Во-первых, в исследованиях необходимо было сравнить гигиенические характеристики как минимум двух методов сушки рук; исследования, посвященные исключительно сообщению об эффективности сушки рук, были исключены.Во-вторых, исследования должны были использовать эмпирический исследовательский подход с количественными результатами; качественные и обзорные статьи были исключены. Мы также исключили тезисы конференций, чтобы сосредоточиться на более существенных результатах. Два независимых исследователя (C.H. и W.M.) участвовали во всех аспектах обзора. Они сравнили и обсудили свои выводы относительно критериев включения и исключения. Разногласия разрешались путем обсуждения с третьим членом команды (С.С.).
Извлечение данных состояло из 5 этапов ().Во-первых, перед анализом были выявлены и удалены повторяющиеся статьи. Во-вторых, заголовки и аннотации оставшихся статей были проверены на соответствие критериям включения. В-третьих, были извлечены и оценены полнотекстовые статьи в соответствии с дизайном исследования и научным подходом. В-четвертых, ссылки и цитаты из указанных статей были проверены, чтобы гарантировать включение всех соответствующих исследований. Наконец, с помощью поисковой системы Google Scholar был проведен поиск материалов (серая литература), выходящих за рамки основной публикуемой журнальной и монографической литературы, таких как правительственные документы, материалы конференций, отчеты об исследованиях, рабочие документы, дискуссионные документы и информационные бюллетени. .
Блок-схема стратегии поиска литературы.
a Правительственные документы, материалы конференций, исследовательские отчеты, рабочие документы, дискуссионные документы и информационные бюллетени.
Все указанные статьи были критически рассмотрены авторами и включены, если необходимо, для обеспечения общего обзора темы. Качество этого обзора оценивалось с использованием системы критической оценки. Авторы использовали контрольный список программы критических навыков оценки36, чтобы убедиться, что вопрос исследования систематически выявлялся, оценивался и резюмировался в соответствии с заранее определенными критериями.
Результаты
Всего в обзор было включено 12 статей. Бумажные полотенца, тканевые полотенца и сушилки горячим воздухом обычно используются для сушки вымытых рук. Руки также могут сохнуть за счет испарения. Осушители воздуха — это электрические устройства, используемые для сушки рук, и они могут работать либо с помощью кнопки, либо автоматически с помощью инфракрасного датчика.37 В последние годы была представлена новая версия осушителя воздуха (например, струйная сушилка). По словам производителя, струйная сушилка отличается от других обычных сушилок горячим воздухом, поскольку в ней используется струя ненагретого воздуха и имеется воздушный фильтр.38 Гигиеническая эффективность сушки рук включает эффективность сушки, эффективное удаление бактерий и предотвращение перекрестного загрязнения. 39-41
Эффективность сушки
Патрик и др. 33 сравнили эффективность сушки тканевых полотенец и сушилок горячим воздухом. Результаты показали, что остаточная вода более эффективно удалялась с рук тканевыми полотенцами. После 10 секунд сушки одноразовым тканевым полотенцем количество остаточной воды на руках уменьшилось до 4%. После 15 секунд сушки количество остаточной воды уменьшилось до 1%.Однако сушилки горячим воздухом работали намного медленнее, и для уменьшения остаточной воды до 3% потребовалось 45 секунд. Redway и Fawdar39 исследовали эффективность сушки бумажных полотенец, сушилок горячим воздухом и сушилок с воздушным потоком. Они обнаружили, что бумажные полотенца и воздушные сушилки почти одинаково эффективны при сушке рук. После 10 секунд сушки обе стали сухими на 90%. Сушилки горячим воздухом занимали значительно больше времени и требовали времени сушки 40 секунд для достижения такой же степени сушки.
Кроме того, Патрик и др. 33 провели исследование в мужских и женских туалетных комнатах, чтобы определить продолжительность времени, в течение которого люди сушат руки.В ванных комнатах были установлены одноразовые тканевые полотенца или системы сушки горячим воздухом, но не то и другое вместе. Они обнаружили, что пользователи-мужчины в среднем тратили 3,5 секунды на тканевые полотенца и 17 секунд на сушилки с горячим воздухом. Те же показатели у женщин составили 5,2 и 13,3 секунды. Они обнаружили, что использование времени сушки 5 секунд с тканевыми полотенцами позволит достичь 85% сухости рук, но использование 20 секунд сушки в сушилках с горячим воздухом позволит достичь менее 70% сухости. Knights et al42 также сообщили, что сушилки горячим воздухом при обычном использовании могут обеспечить сухость рук только на 55% для мужчин и на 68% для женщин.Напротив, тканевые полотенца и бумажные полотенца обычно могут достигать 90% или более сухости для обоих полов.
Удаление бактерий
Хотя степень влажности способствует выживанию и передаче бактерий на руках, другие факторы также влияют на гигиенические характеристики метода сушки рук. Redway и Fawdar39 оценили изменения количества бактерий на руках до и после использования бумажных полотенец, сушилки горячим воздухом или сушилки с воздушным потоком. Образцы подушечек пальцев отбирали с помощью контактных пластин, а образцы ладоней отбирали мазками и инокуляцией пластин с агаром.Они обнаружили, что бумажные полотенца уменьшают количество всех типов бактерий на руках. Однако сушилка с горячим воздухом увеличила количество бактерий на руках. Струйная сушилка также увеличивала количество бактерий, но это было меньше, чем при сушилке горячим воздухом. В их исследовании использовались новая сушилка горячим воздухом и новая струйная сушилка; следовательно, авторы утверждали, что любое увеличение количества бактерий после использования сушилок должно быть вызвано другими факторами, а не загрязнением самих сушилок.39 Hanna et al43 и Blackmore44 сравнили количество бактерий, оставшихся на руках после сушки бумажными полотенцами, тканевыми полотенцами или сушилками горячим воздухом. Пробы бактерий брали с рук на контактные пластины. Авторы также сообщили, что сушилки горячим воздухом были наименее эффективным методом удаления бактерий с вымытых рук.
Напротив, другое исследование показало, что сушилки горячим воздухом превосходят бумажные и тканевые полотенца. Ансари и др. 45 сравнили эффективность бумажных полотенец, тканевых полотенец и сушилок горячим воздухом в устранении ротавирусов и Escherichia coli с рук.Для сушки на воздухе вымытые подушечки пальцев держали на расстоянии 10 см от сопла сушилок горячим воздухом в течение 10 секунд. Для сушки бумажными или тканевыми полотенцами подушечки для пальцев помещали на впитывающую поверхность с равномерным давлением на 10 секунд. Авторы не учли трение при сушке рук из-за трудностей стандартизации и точного представления полевых условий. Чтобы оценить влияние различных процедур сушки, микроорганизмы на подушечке пальца были элюированы сбалансированным солевым раствором, а затем элюаты титровались.Исследование показало, что сушка горячим воздухом дает наибольшее сокращение, а сушка тканевыми полотенцами приводит к наименьшему снижению количества обоих микроорганизмов. Однако Ансари и др. 45 также упомянули, что трение часто возникает, когда руки сушат бумажными или тканевыми полотенцами. Еще предстоит определить, может ли трение привести к дальнейшему снижению загрязнения во время сушки рук.
Некоторые исследования не обнаружили существенной разницы между методами сушки рук для удаления бактерий с вымытых рук.Густафсон и др. 46 исследовали гигиенические характеристики бумажных полотенец, тканевых полотенец, сушилок горячим воздухом и самопроизвольное испарение. В исследовании сравнивалась разница между количеством бактерий на руках после сушки четырьмя способами. Бактерии были определены с использованием модифицированной процедуры отбора проб сока из перчаток, и результаты не выявили различий между 4 методами. Taylor et al47 и Matthews and Newsom48 исследовали остаточные бактерии на руках после сушки горячим воздухом и бумажными полотенцами с использованием контактных пластин.Они также не обнаружили различий в удалении бактерий между двумя методами.
Другие исследования изучали дифференциальные результаты. Ямамото и др .49 использовали метод контактной пластины для оценки эффекта сушилки горячим воздухом, когда руки растирались и когда руки оставались неподвижными. Когда руки терлись, количество бактерий на руках значительно увеличивалось после 15 секунд использования. Когда руки оставались неподвижными, количество бактерий на руках уменьшалось. Авторы далее исследовали различия в количестве бактерий на руках при сушке горячим воздухом и бумажными полотенцами.Было обнаружено, что бумажные полотенца более эффективны для удаления бактерий с кончиков пальцев, но не с ладоней и пальцев. Это исследование окончательно пришло к выводу, что сушка неподвижных рук горячим воздухом в течение 30 секунд с УФ-светом была более эффективной для удаления бактерий, чем сушка бумажным полотенцем. Сушка горячим воздухом при растирании рук была менее эффективной, чем при использовании бумажных полотенец. Snelling et al35 сравнили струйную сушилку с двумя моделями сушилок горячим воздухом в отношении передачи бактерий после сушки и эффекта трения рук во время использования сушилки.При времени сушки 10 секунд обе сушилки горячим воздухом были связаны с более высоким уровнем переноса бактерий, чем когда сушилка не использовалась вообще. Однако струйная сушилка привела к гораздо меньшему переносу бактерий, чем сушилки горячим воздухом. Когда сушилки горячим воздухом использовались в течение 30–35 секунд, их характеристики значительно улучшились, но все же были хуже, чем у струйной сушилки после 10 секунд использования. Кроме того, протирание рук при использовании сушилок горячим воздухом препятствовало общему снижению количества бактерий.Для дальнейшего сравнения с методом бумажных полотенец авторы взяли образцы бактерий на ладонях, пальцах и кончиках пальцев с помощью контактных пластин. Они обнаружили, что вытирание рук бумажными полотенцами было лучшим средством удаления бактерий с рук, особенно с кончиков пальцев.
Влияние на перекрестное загрязнение
Ванные комнаты и туалеты считаются местами с высоким риском размножения и передачи бактерий.50 Каждый раз, когда смывают воду из туалета, в воздух может распыляться мелкодисперсный аэрозольный туман на площади до 6 м 2 .51,52 Этот туман может содержать многие типы фекальных бактерий, которые могут вызывать заболевания. 53 Ngeow et al54 исследовали потенциальный риск того, что сушилки с горячим воздухом способствуют переносу инфекции по воздуху в условиях больницы. В исследовании сравнивали распространение бактерий, вызванное сушилкой горячим воздухом, с распространением бумажных полотенец. Распространение бактерий с помощью сушилок горячим воздухом было обнаружено в радиусе примерно 3 футов от сушилок горячим воздухом и до лабораторного халата исследователя. Когда для сушки рук использовались бумажные полотенца, распространения бактерий не наблюдалось.Поэтому авторы утверждали, что сушилки горячим воздухом непригодны для использования в отделениях интенсивной терапии, поскольку они могут способствовать перекрестному заражению либо через воздушно-капельное распространение, либо через зараженный персонал. Ханна и др. 43 также сообщили, что сушилки горячим воздухом привели к появлению значительного количества переносимых по воздуху бактерий в непосредственной близости от пользователя, тогда как бумажные и тканевые полотенца вызывали незначительное загрязнение окружающей среды. Redway и Fawdar39 оценили загрязнение окружающей среды туалета, вызванное различными методами сушки рук.Установлено, что струйные сушилки рассеивают загрязнения рук на расстояние не менее 2 м. Бумажные полотенца и сушилки с горячим воздухом были намного лучше, чем сушилки с воздушным потоком, в отношении загрязнения окружающей среды туалета. Бумажные полотенца также лучше, чем сушилки горячим воздухом, по загрязнению непосредственно под устройством, но не было никакой разницы на больших расстояниях.
Согласно другим исследованиям, сушка рук горячим воздухом вряд ли вызовет инфекцию, передающуюся по воздуху. Taylor et al47 оценили, изменяют ли сушилки горячим воздухом уровни переносимых по воздуху микроорганизмов в среде туалета.Они обнаружили, что воздух, выходящий из выпускного отверстия сушилки, содержит меньше микроорганизмов, чем воздух, поступающий в сушилку. Они также обнаружили, что уровни микроорганизмов на внешних поверхностях сушилок горячим воздухом не отличались от таковых на других поверхностях туалетных комнат. Таким образом, авторы утверждали, что сушилки горячим воздухом подходят для использования как в здравоохранении, так и в пищевой промышленности. Точно так же Мэтьюз и Ньюсом48 сравнили аэрозоли бактерий, выделяемые в воздух при сушке рук, с помощью 4 различных моделей сушилок горячим воздухом и бумажных полотенец.Они не обнаружили разницы между аэрозолями, выделяемыми бумажными полотенцами, и двумя моделями сушилок горячим воздухом, тогда как другие 2 модели сушилок горячим воздухом производили меньше аэрозолей, чем бумажные полотенца. Они пришли к выводу, что сушилки горячим воздухом безопасны с бактериологической точки зрения. Однако можно утверждать, что в этих исследованиях воздух от вентиляторов может разбавлять аэрозоли, поэтому результаты нельзя строго сопоставить.
Прочие проблемы
Предпочтения пользователя
Предпочтения пользователей являются важным фактором, определяющим соблюдение гигиены рук.40 В 2008 году в Европе был проведен опрос 2000 жителей Европы с целью изучения мнения пользователей о различных методах сушки рук.55 Опрос показал, что 62% пользователей выбрали бумажные полотенца в качестве предпочтительного метода сушки рук, а затем сушилки горячим воздухом (28 %) и тканевые роликовые полотенца (10%). Другое исследование, проведенное в 2009 году среди 2516 взрослых американцев, по-прежнему показало, что большинство людей предпочитают сушить руки бумажными полотенцами.56 Если у них был выбор, 55% респондентов выбрали бумажные полотенца, 25% выбрали сушилки с воздушным потоком, 16% выбрали сушилки горячим воздухом. , 1% выбрали тканевые роликовые полотенца, а 3% не были уверены.В Австралии недавний телефонный опрос показал, что производители продуктов питания, руководители предприятий и уборщики также считают бумажные полотенца своим наиболее предпочтительным методом сушки рук57. Следовательно, учитывая сильное предпочтение использования бумажных полотенец, соблюдение гигиены рук, возможно, снизится, если бумажные полотенца не доступны в туалетных комнатах.
Раздражение кожи
Известно, что некоторые антибактериальные мыла, хирургические препараты для рук, а также растворы хлора и йода могут вызывать раздражение кожи рук.58,59 Использование осушителя воздуха может привести к тому, что руки станут чрезмерно сухими, грубыми и красными. При частом мытье и сушке руки могут раздражаться60. Пострадавшие часто испытывают чувство сухости или жжения; кожа кажется шершавой; и эритема, шелушение или трещины. Когда руки становятся раздраженными, медицинские работники могут не мыть руки так часто и не так часто. Обеспокоенность по поводу этого эффекта воздушных сушилок может стать важной причиной плохого принятия правил гигиены рук.
Шум
Воздухоосушители, особенно струйные сушилки, очевидно, шумнее бумажных или тканевых полотенец.По словам Редвея и Фавдара39, средний уровень децибел при использовании струйной сушилки воздуха на расстоянии 0,5 м составил 94 дБ, что превышает уровень шума тяжелого грузовика, проезжающего на расстоянии 3 м. При одновременном использовании двух струйных осушителей воздуха уровень децибел на расстоянии 2 м составлял 92 дБ. Поэтому в туалетных комнатах со струйными сушилками уровень шума может представлять потенциальный риск для тех, кто подвергается его длительному воздействию.
Влияние на окружающую среду
Использование бумажных полотенец может иметь неблагоприятные последствия для удаления отходов и защиты окружающей среды.Однако было проведено ограниченное исследование влияния различных методов сушки рук на окружающую среду. Budisulistiorini61 оценил жизненный цикл бумажных полотенец и методов сушки горячим воздухом для сушки рук. Согласно исследованию Budisulistiorini, метод бумажных полотенец выделяет относительно больше парниковых газов, чем метод сушки горячим воздухом (1377 против 1337 кг эквивалента диоксида углерода). С точки зрения экологической устойчивости метод сушки горячим воздухом превосходит метод бумажных полотенец с лучшими баллами по 6 показателям (респираторные органические вещества, респираторные неорганические вещества, озоновый слой, экотоксичность, подкисление / эвтрофикация и ископаемое топливо) по сравнению с 5 показателями (канцерогены, климат изменение, радиация, землепользование и минералы) для бумажных полотенец.61
Стоимость
Использование бумажных полотенец обходится дороже, чем использование сушилок. Бумажные полотенца необходимо часто менять, тогда как сушилки воздуха обычно не требуют особого ухода. Budisulistiorini61 утверждал, что метод бумажных полотенец трудоемок и также зависит от поведения пользователей. Однако приобретение и установка осушителей воздуха могут быть дорогостоящими. Следовательно, лица, ответственные за управление объектом, должны провести тщательный анализ затрат, чтобы определить, являются ли они рентабельными в своем здании.
Обсуждение
Сушка рук должна быть неотъемлемой частью процесса гигиены рук в здравоохранении.11,13 Однако, похоже, нет согласия относительно наиболее гигиеничного метода сушки рук. Результаты различных исследований также противоречивы.62 Некоторые исследования показали, что электрические осушители воздуха имеют меньшую эффективность, когда дело доходит до вопроса гигиены, 39,43,44, тогда как другие твердо придерживались мнения, что они безопасны и эффективны. средство для сушки рук.47,48
Большое расхождение между исследованиями можно частично объяснить различиями в используемых экспериментальных протоколах. Степень влажности является важным фактором при определении количества обнаруженных бактерий. Тейлор и др .47 утверждали, что результаты контактной пластины, по-видимому, отражают степень влажности после сушки, а не фактическое количество бактерий на руках. Некоторые исследователи использовали в своих исследованиях длительное время сушки горячим воздухом, тогда как другие использовали короткое время сушки.Например, Мэтьюз и Ньюсом48 использовали сушилки горячим воздухом до тех пор, пока участники исследования полностью не высохли руки, обычно в течение 1 минуты. Тем не менее, Редуэй и Фавдар39 попытались максимально точно воспроизвести привычные для людей методы сушки рук. В их исследовании среднее время сушки рук составляло 10 секунд с использованием бумажных полотенец и 20 секунд с использованием сушилок горячим воздухом. Таким образом, значительно более низкие гигиенические характеристики сушилок с горячим воздухом могут быть связаны с их низкой эффективностью сушки и, как следствие, с большим количеством воды, остающейся на руках.
Хотя воздушные сушилки с воздушным потоком имели эффективность сушки, аналогичную бумажным полотенцам, их гигиенические характеристики были все же хуже, чем у бумажных полотенец.39 Различия в количестве бактерий после сушки воздушными сушилками и бумажными полотенцами могли быть связаны с другими факторами, а не с процентом сухости один. Трение может вытеснять микроорганизмы с поверхности кожи как во время мытья рук, так и во время сушки. Противомикробные агенты в мыле имеют слишком малое время контакта, чтобы оказывать бактерицидное действие при однократном использовании или при спорадических стирках, что делает трение наиболее важным элементом при сушке рук.40 Вполне вероятно, что бумажные полотенца работают лучше, потому что они физически удаляют бактерии с рук, в то время как сушилки горячим воздухом и струйные сушилки не могут. 39 Однако во многих случаях протирание рук сушилкой горячим воздухом для ускорения сушки приведет только к увеличению бактериального количества и распространения по воздуху.49 Возможно, трение рук вызывает миграцию бактерий из волосяных фолликулов на поверхность кожи.35,44
Многие исследования показали, что трение является ключевым компонентом сушки рук для удаления загрязнений.Например, Sprunt et al63 и Coates et al32 сообщили, что бактерии были удалены с вымытых рук за счет механического абразивного воздействия сушки бумажными полотенцами. Taylor et al47 и Yamamoto et al49 провели микробиологическое тестирование бумажных полотенец после использования, которое показало, что многие бактерии были перенесены с рук на бумажные полотенца.
Движение воздуха может способствовать распространению и передаче бактерий и увеличивать вероятность перекрестного заражения. Воздух в туалетной комнате рециркулируется с помощью осушителей воздуха.Такая рециркуляция может привести к рассеиванию инфекционных аэрозолей, уже находящихся в атмосфере, и тех, которые образуются при трении рук друг о друга для сушки.45 Отработанные сушилки воздуха в туалетных комнатах часто загрязнены и могут выделять бактерии в потоке воздуха39. риск того, что люди, стоящие перед осушителями воздуха, могут заразить бактерии, распространяющиеся в потоке воздуха к ним. Бактерии могут вдыхаться или оседать на теле или одежде человека, что делает его / ее потенциальным мобильным источником инфекции.54
В целом гигиеническая эффективность метода сушки рук — это не только процент сухости рук, но также удаление бактерий с вымытых рук и предотвращение перекрестного загрязнения. Сушилки горячим воздухом, как правило, не рекомендуются для использования в медицинских учреждениях, поскольку такие сушилки относительно медленные и шумные, а их гигиенические характеристики сомнительны.44 Рулонные полотенца из ткани не рекомендуются, потому что они могут стать обычными полотенцами в конце рулона и может быть источником передачи возбудителя на чистые руки.Недавно струйные сушилки прошли независимую сертификацию в области безопасности пищевых продуктов в Австралии, что свидетельствует об их повышенных гигиенических преимуществах по сравнению с традиционным методом сушки горячим воздухом.64 Однако критерии и процесс получения этого типа сертификации остаются под вопросом. Аспекты, касающиеся здоровья и безопасности струйных сушилок для использования в местах, где гигиена имеет первостепенное значение, все же должны быть тщательно изучены научным сообществом. Таким образом, сушка бумажных полотенец, при которой создается небольшое движение воздуха, является наиболее гигиеничным вариантом сушки рук в здравоохранении.39
Принципы гигиены рук универсальны. Они не меняются в зависимости от пола, цвета кожи или размера рук40. На основании нашего обзора тщательная сушка рук одноразовыми бумажными полотенцами является предпочтительным методом сушки рук с точки зрения гигиены рук. Этот вывод поднимает вопрос о том, какие бумажные полотенца следует использовать для сушки рук. Влияет ли качество бумажных полотенец на соблюдение гигиены рук? Если для сушки рук используется переработанная бумага, какие исследования целесообразны для оценки рентабельности использования переработанной бумаги? Многие вопросы остаются без ответа.Различные типы бумажных полотенец могут иметь разные впитывающие характеристики, что может влиять на их способность удалять бактерии с вымытых рук.45 Качество бумажных полотенец очень важно, поскольку некачественные полотенца могут повредить кожу в результате истирания и неэффективной сушки41, 65. будет более приемлемым в будущем, поскольку может способствовать устойчивости окружающей среды. Такие исследования могут иметь потенциал для значительного улучшения практики гигиены рук и устойчивого развития.
Также важно поддерживать чистоту вокруг бумажных полотенец. Бумажные полотенца, помещенные в мусорные ведра, могут действовать как бактериологический резервуар, если утилизация не осуществляется должным образом.47 Регулярная санитарная уборка туалетов — единственный способ уменьшить количество бактерий и предотвратить перекрестное заражение.51 Более того, бумажные полотенца необходимо доставить пользователям из диспенсеров. Риск потенциального загрязнения между выходами из диспенсера, бумажными полотенцами и руками следует учитывать при проектировании, изготовлении и использовании диспенсеров для бумажных полотенец.66 Архитекторы, работающие в сфере здравоохранения, также должны знать об этих проблемах при проектировании оборудования для новых объектов.67
Заключение
Гигиена рук может предотвратить заболевания и уменьшить количество инфекций, связанных с оказанием медицинской помощи. Правильная сушка рук после мытья должна быть важным компонентом эффективных процедур гигиены рук. Большинство исследований показали, что бумажные полотенца могут эффективно сушить руки, эффективно удалять бактерии и вызывать меньшее загрязнение среды туалета.С точки зрения гигиены бумажные полотенца превосходят сушилки на воздухе; поэтому бумажные полотенца следует рекомендовать для использования в местах, где гигиена имеет первостепенное значение, например, в больницах и клиниках. Предоставление бумажных полотенец также следует рассматривать как средство улучшения соблюдения гигиены рук медицинскими работниками. Наши результаты могут иметь значение для медицинских работников и преподавателей, стремящихся разработать эффективные программы по продвижению практики гигиены рук.
Основные моменты статьи
- ■ Мытье рук — наиболее важная мера по снижению бремени инфекций, связанных с оказанием медицинской помощи.
- ■ Поскольку распространение бактерий более вероятно через влажную кожу, чем через сухую, правильная сушка рук после мытья должна быть важным компонентом процедур гигиены рук.
- ■ Гигиеническая эффективность сушки рук включает эффективность сушки, эффективное удаление бактерий и предотвращение перекрестного загрязнения.
- ■ С точки зрения гигиены бумажные полотенца превосходят электрические воздушные сушилки.
- ■ Тщательная сушка рук одноразовыми бумажными полотенцами является предпочтительным методом сушки рук в медицинских учреждениях.
- ■ Предоставление бумажных полотенец следует рассматривать как средство улучшения соблюдения гигиены рук медицинскими работниками.
Благодарности
Мы благодарим Шеннон Резерфорд, доктора философии, старшего преподавателя Университета Гриффита, за ее полезные комментарии при подготовке представленной рукописи.
Сноски
Потенциальные конкурирующие интересы: Сьюзан Стэк работала консультантом по охране труда и технике безопасности в компании Kimberly-Clark, Сидней, Австралия.
Дополнительные онлайн-материалы
Видео 1:Автор видео с интервью
Ссылки
1. Каулинг Б., Чан К., Фанг В. Маски и средства гигиены рук для предотвращения передачи гриппа в домашних условиях. Ann Intern Med. 2009. 151 (7): 437–446. [PubMed] [Google Scholar] 2. Ченг В., Тай Дж., Вонг Л. Профилактика внутрибольничной передачи вируса пандемического гриппа свиного происхождения A / h2N1 с помощью связки инфекционного контроля. J Hosp Infect. 2010. 74 (3): 271–277. [Бесплатная статья PMC] [PubMed] [Google Scholar] 3.Фитцджеральд Д.А. Грипп свиней человека A [h2N1]: практические советы для врачей на ранней стадии пандемии. Педиатр Респир Ред. 2009; 10 (3): 154–158. [PubMed] [Google Scholar] 4. Балхи Х., Аболфотух М., Аль-Хатлул Р., Аль-Джума М. Осведомленность, отношение и практика, связанные с пандемией свиного гриппа среди населения Саудовской Аравии. BMC Infect Dis. 2010; 10: 42. [Бесплатная статья PMC] [PubMed] [Google Scholar] 5. Пак Дж.Х., Чеонг Х.К., Сон Д.Й., Ким С.Ю., Ха К.М. Восприятие и поведение, связанные с гигиеной рук для предотвращения передачи гриппа h2N1 среди корейских студентов университетов в период пика пандемии.BMC Infect Dis. 2010; 10: 222. [Бесплатная статья PMC] [PubMed] [Google Scholar] 6. Талаат М., Афифи С., Дьюджер Э. Влияние кампаний по гигиене рук на заболеваемость лабораторно подтвержденным гриппом и прогулами среди школьников, Каир, Египет. Emerg Infect Dis. 2011. 17 (4): 619–625. [Бесплатная статья PMC] [PubMed] [Google Scholar] 7. Айелло А., Мюррей Г., Перес В. Использование масок, гигиена рук и сезонное гриппоподобное заболевание среди молодых людей: рандомизированное интервенционное исследование. J Infect Dis. 2010. 201 (4): 491–498.[PubMed] [Google Scholar] 9. Stewardson A., Pittet D. Ignác Semmelweis — чествуют первопроходца в области безопасности пациентов, получившего недостатки. Ланцет. 2011. 378 (9785): 22–23. [PubMed] [Google Scholar] 10. Гольдманн Д. Системный сбой против личной ответственности — аргументы в пользу чистых рук. N Engl J Med. 2006. 355 (2): 121–123. [PubMed] [Google Scholar] 11. Бойс Дж., Питтет Д. Руководство по гигиене рук в медицинских учреждениях: рекомендации консультативного комитета по практике инфекционного контроля в здравоохранении и целевой группы HICPAC / SHEA / APIC / IDSA по гигиене рук.Инфекционный контроль Hosp Epidemiol. 2002; 23 (12, доп.): S3 – S40. [PubMed] [Google Scholar] 12. Питтет Д., Аллегранци Б., Сакс Х. Доказательная модель передачи данных через руки во время ухода за пациентами и роль усовершенствованных практик. Lancet Infect Dis. 2006. 6 (10): 641–652. [PubMed] [Google Scholar] 13. Всемирная организация здоровья . Рекомендации ВОЗ по гигиене рук в здравоохранении. Всемирная организация здоровья; Женева, Швейцария: 2009. [Google Scholar] 14. Аллегранци Б., Питтет Д. Роль гигиены рук в профилактике инфекций, связанных с оказанием медицинской помощи.J Hosp Infect. 2009. 73 (4): 305–315. [PubMed] [Google Scholar] 15. Херуд Т., Нильсен Р.М., Свендхейм К., Хартуг С. Связь между использованием средств гигиены рук и уровнем инфекций, связанных с оказанием медицинской помощи, в крупной университетской больнице в Норвегии. Am J Infect Control. 2009. 37 (4): 311–317. [PubMed] [Google Scholar] 16. Тодд Э., Грейг Дж., Бартлесон К., Майклс Б. Вспышки, при которых работники пищевой промышленности были причастны к распространению болезней пищевого происхождения, часть 5: источники заражения и выделения патогенов от инфицированных людей.J Food Prot. 2008. 71 (12): 2582–2595. [PubMed] [Google Scholar] 17. Грин Л., Радке В., Мейсон Р. Факторы, связанные с соблюдением правил гигиены рук пищевых работников. J Food Prot. 2007. 70 (3): 661–666. [PubMed] [Google Scholar] 18. Киннула С., Тапиайнен Т., Ренко М., Ухари М. Безопасность использования спиртового геля для рук детьми и персоналом детского сада. Am J Infect Control. 2009. 37 (4): 318–321. [PubMed] [Google Scholar] 19. Гуинан М., Макгукин М., Али Ю. Влияние комплексной программы мытья рук на прогулы в начальных школах.Am J Infect Control. 2002. 30 (4): 217–220. [PubMed] [Google Scholar] 20. Ранний Э., Баттл К., Кэнтуэлл Э., Инглиш Дж., Лэвин Дж., Ларсон Э. Влияние нескольких вмешательств на частоту мытья рук среди учащихся начальной государственной школы. Am J Infect Control. 1998. 26 (3): 263–269. [PubMed] [Google Scholar] 21. Лопес-Кинтеро К., Фриман П., Ноймарк Ю. Мытье рук школьниками в Боготе, Колумбия. Am J Public Health. 2009. 99 (1): 94–101. [Бесплатная статья PMC] [PubMed] [Google Scholar] 22. Айелло А., Коулборн Р., Перес В., Ларсон Э. Влияние гигиены рук на риск инфекционных заболеваний в сообществе: метаанализ. Am J Public Health. 2008. 98 (8): 1372–1381. [Бесплатная статья PMC] [PubMed] [Google Scholar] 23. Раби Т., Кертис В. Мытье рук и риск респираторных инфекций: количественный систематический обзор. Trop Med Int Health. 2006. 11 (3): 258–267. [Бесплатная статья PMC] [PubMed] [Google Scholar] 24. Смит С. Обзор методов мытья рук в учреждениях первичной медико-санитарной помощи и в общественных местах. J Clin Nurs.2009. 18 (6): 786–790. [PubMed] [Google Scholar] 25. Сикберт-Беннетт Э., Вебер Д., Герген-Тиг М., Собси М., Самса Г., Рутала В. Сравнительная эффективность средств гигиены рук в уменьшении количества бактерий и вирусов. Am J Infect Control. 2005. 33 (2): 67–77. [Бесплатная статья PMC] [PubMed] [Google Scholar] 26. Тодд Э., Грейг Дж., Майклс Б., Бартлесон К., Смит Д., Холах Дж. Вспышки, при которых работники пищевой промышленности были причастны к распространению болезней пищевого происхождения, часть 11: использование антисептиков и дезинфицирующих средств в условиях местного сообщества соблюдения гигиены рук в сфере здравоохранения и пищевой промышленности.J Food Prot. 2010. 73 (12): 2306–2320. [PubMed] [Google Scholar] 28. О’Бойл С., Хенли С., Ларсон Э. Понимание соблюдения рекомендаций по гигиене рук: теория запланированного поведения. Am J Infect Control. 2001. 29 (6): 352–360. [PubMed] [Google Scholar] 29. Хаас Дж., Ларсон Э. Измерение соблюдения гигиены рук. J Hosp Infect. 2007. 66 (1): 6–14. [PubMed] [Google Scholar] 30. Питтет Д., Хьюгоннет С., Харбарт С. Эффективность общебольничной программы по улучшению соблюдения гигиены рук.Ланцет. 2000. 356 (9238): 1307–1312. [PubMed] [Google Scholar] 31. Эразмус В., Даха Т.Дж., Бруг Х. Систематический обзор исследований соблюдения рекомендаций по гигиене рук при оказании стационарной помощи. Инфекционный контроль Hosp Epidemiol. 2010. 31 (3): 283–294. [PubMed] [Google Scholar] 32. Коутс Д., Хатчинсон Д., Болтон Ф. Выживание термофильных кампилобактеров на кончиках пальцев и их устранение путем мытья и дезинфекции. Epidemiol Infect. 1987. 99 (2): 265–274. [Бесплатная статья PMC] [PubMed] [Google Scholar] 33. Патрик Д., Финдон Г., Миллер Т. Остаточная влажность определяет уровень передачи бактерий при прикосновении после мытья рук. Epidemiol Infect. 1997. 119 (3): 319–325. [Бесплатная статья PMC] [PubMed] [Google Scholar] 34. Мерри А., Миллер Т., Финдон Г., Вебстер К., Нефф С. Уровни загрязнения прикосновения во время анестезиологических процедур и их связь с процедурами гигиены рук: клинический аудит. Br J Anaesth. 2001. 87 (2): 291–294. [PubMed] [Google Scholar] 35. Снеллинг А.М., Сэвилл Т., Стивенс Д., Беггс К.B. Сравнительная оценка гигиенической эффективности сверхбыстрой сушилки для рук по сравнению с обычными сушилками для рук с теплым воздухом. J Appl Microbiol. 2011. 110 (1): 19–26. [Бесплатная статья PMC] [PubMed] [Google Scholar] 40. Тодд E.C.D., Майклс Б.С., Смит Д., Грейг Д.Д., Бартлесон К.А. Вспышки, при которых работники пищевой промышленности были причастны к распространению болезней пищевого происхождения, часть 9: мытье и сушка рук для снижения микробного заражения. J Food Prot. 2010. 73 (10): 1937–1955. [PubMed] [Google Scholar] 41. Джумаа П. Гигиена рук: просто и сложно.Int J Infect Dis. 2005; 9 (1): 3–14. [PubMed] [Google Scholar] 42. Найтс Б., Эванс К., Баррасс С., МакХарди Б. Сушка рук: оценка эффективности и гигиены различных методов: исследование, проведенное исследовательской группой по прикладной экологии для Ассоциации производителей мягких тканей. Вестминстерский университет; Лондон, Великобритания: 1993. [Google Scholar] 43. Ханна П.Дж., Ричардсон Б.Дж., Маршалл М. Сравнение эффективности очистки трех распространенных методов сушки рук. Appl Occup Environ Hyg.1996. 11 (1): 37–43. [Google Scholar] 44. Блэкмор М. Сравнение способов сушки рук. Cater Health. 1989; 1 (1): 189–198. [Google Scholar] 45. Ансари С., Спрингторп В., Саттар С., Тостоварик В., Уэллс Г. Сравнение сушки ткани, бумаги и теплого воздуха для уничтожения вирусов и бактерий с вымытых рук. Am J Infect Control. 1991. 19 (5): 243–249. [PubMed] [Google Scholar] 46. Густафсон Д.Р., Веттер Э.А., Поджог Д.Р.Л. Эффекты 4 методов сушки рук для удаления бактерий с вымытых рук: рандомизированное испытание.Mayo Clin Proc. 2000. 75 (7): 705–708. [PubMed] [Google Scholar] 47. Тейлор Дж., Браун К., Тойвенен Дж., Холах Дж. Микробиологическая оценка сушилок для рук с теплым воздухом с точки зрения гигиены рук и среды туалета. J Appl Microbiol. 2000. 89 (6): 910–919. [PubMed] [Google Scholar] 48. Мэтьюз Дж. А., Ньюсом С. В. Б. Электрические сушилки для рук с горячим воздухом по сравнению с бумажными полотенцами на предмет потенциального распространения бактерий, переносимых по воздуху. J Hosp Infect. 1987. 9 (1): 85–88. [PubMed] [Google Scholar] 49. Ямамото Ю., Угай К., Такахаши Ю.Эффективность сушки рук для удаления бактерий с вымытых рук: сравнение сушки бумажных полотенец с сушкой на теплом воздухе. Инфекционный контроль Hosp Epidemiol. 2005. 26 (3): 316–320. [PubMed] [Google Scholar] 50. Хамбреус А., Мальмборг А. Дезинфекция или уборка больничных туалетов — оценка различных процедур. J Hosp Infect. 1980. 1 (2): 159–163. [PubMed] [Google Scholar] 52. Скотт Э., Блумфилд С.Ф. Бактериологическое исследование эффективности процедур очистки и дезинфекции для гигиены туалета.J Appl Bacteriol. 1985. 59 (3): 291–297. [PubMed] [Google Scholar] 54. Нгеоу Ю.Ф., Онг Х.В., Тан П. Распространение бактерий с помощью воздушной сушилки для рук. Malays J Pathol. 1989; 11: 53–56. [PubMed] [Google Scholar] 58. Бойс Дж., Келлихер С., Валланд Н. Раздражение и сухость кожи, связанные с двумя режимами гигиены рук: мытье рук с мылом и антисептика рук с помощью спиртового геля для рук. Инфекционный контроль Hosp Epidemiol. 2000. 21 (7): 442–448. [PubMed] [Google Scholar] 59. Сикберт-Беннет Э., Вебер Д.Дж., Герген-Тиг М.Ф., Рутала В.А.Влияние переменных теста на эффективность средств гигиены рук. Am J Infect Control. 2004. 32 (2): 69–83. [PubMed] [Google Scholar] 60. Педерсен Л., Хельд Э., Йохансен Дж., Агнер Т. Дезинфицирующее средство на спиртовой основе вызывает меньшее раздражение кожи, чем моющее средство, используемое для дезинфекции рук. Br J Dermatol. 2005. 153 (6): 1142–1146. [PubMed] [Google Scholar] 62. Лармер П.Дж., Тилсон Т.М., Скоун Ф.М., Грант П.М., Экстон Дж. Доказательные рекомендации по гигиене рук для медицинских работников в Новой Зеландии.N Z Med J. 2008; 121 (1272): 69–81. [PubMed] [Google Scholar] 63. Спрунт К., Редман В., Лейди Г. Антибактериальная эффективность обычного мытья рук. Педиатрия. 1973; 52 (2): 264–271. [PubMed] [Google Scholar] 65. Гулд Д. Обеззараживание рук: мнения и практика медсестер. Nurs Times. 1995. 91 (17): 42–45. [PubMed] [Google Scholar] 66. Харрисон В.А., Гриффит С.Дж., Эйерс Т., Майклс Б.Перенос бактерий и возможность перекрестного заражения, связанные с выдачей бумажных полотенец. Am J Infect Control. 2003. 31 (7): 387–391.[PubMed] [Google Scholar] 67. Харрисон В.А., Гриффит С.Дж., Майклс Б., Эйерс Т. Методика определения путей воздействия загрязнения и экономической эффективности выдачи сложенных бумажных полотенец. Am J Infect Control. 2003. 31 (2): 104–108. [PubMed] [Google Scholar]Угрозы поражения электрическим током и человеческое тело
Цели обучения
К концу этого раздела вы сможете:
- Определите термическую опасность, опасность поражения электрическим током и короткого замыкания.
- Объясните, какое влияние различные уровни тока оказывают на человеческое тело.
Есть две известные опасности электричества — термическая и ударная. Тепловая опасность — это опасность, при которой чрезмерная электрическая мощность вызывает нежелательные тепловые эффекты, такие как начало пожара в стене дома. Опасность поражения электрическим током возникает, когда электрический ток проходит через человека. Шок варьируется по степени тяжести от болезненного, но в остальном безвредного, до смертельного, вызывающего остановку сердца. В этом разделе количественно рассматриваются эти опасности и различные факторы, влияющие на них.Электробезопасность: Системы и устройства будут рассматривать системы и устройства для предотвращения поражения электрическим током.
Электроэнергия вызывает нежелательные эффекты нагрева всякий раз, когда электрическая энергия преобразуется в тепловую со скоростью, превышающей ее безопасное рассеивание. Классическим примером этого является короткое замыкание , путь с низким сопротивлением между выводами источника напряжения. Пример короткого замыкания показан на рисунке 1. Изоляция проводов, ведущих к прибору, изношена, что позволяет двум проводам соприкасаться.Такой нежелательный контакт с высоким напряжением называется коротким замыканием . Поскольку сопротивление короткого замыкания, r , очень мало, мощность, рассеиваемая коротким замыканием, P = В 2 / r , очень велика. Например, если В, составляет 120 В, а r составляет 0,100 Ом, тогда мощность составляет 144 кВт, что на намного больше, чем у обычного бытового прибора. Тепловая энергия, передаваемая с такой скоростью, очень быстро поднимает температуру окружающих материалов, плавя или, возможно, воспламеняя их.
Рис. 1. Короткое замыкание — это нежелательный путь с низким сопротивлением через источник напряжения. (а) Изношенная изоляция проводов тостера позволяет им соприкасаться с низким сопротивлением r. Поскольку P = V 2 / r , тепловая мощность создается так быстро, что шнур плавится или горит. (б) Схема короткого замыкания.
Один особенно коварный аспект короткого замыкания заключается в том, что его сопротивление может фактически уменьшиться из-за повышения температуры.Это может произойти, если короткое замыкание создает ионизацию. Эти заряженные атомы и молекулы могут свободно перемещаться и, таким образом, снижают сопротивление r . Поскольку P = V 2 / r , мощность, рассеиваемая при кратковременных повышениях, может вызвать большую ионизацию, большую мощность и т. Д. Высокое напряжение, такое как 480 В переменного тока, используемое в некоторых промышленных приложениях, поддается этой опасности, потому что более высокие напряжения создают более высокую начальную выработку энергии за короткое время.
Другая серьезная, но менее серьезная термическая опасность возникает, когда провода, по которым подается питание к пользователю, перегружены слишком большим током.Как обсуждалось в предыдущем разделе, мощность, рассеиваемая в проводах питания, составляет P = I 2 R w , где R w — сопротивление проводов, а I — сопротивление проводов. через них протекает ток. Если значение I или R w слишком велико, провода перегреваются. Например, изношенный шнур электроприбора (с порванными некоторыми плетеными проводами) может иметь R w = 2,00 Ом, а не 0.100 Ом должно быть. Если через шнур проходит ток 10,0 А, то в шнуре рассеивается P = I 2 R w = 200 Вт — намного больше, чем это безопасно. Точно так же, если провод с сопротивлением 0,100 Ом предназначен для передачи нескольких ампер, а вместо этого имеет ток 100 А, он сильно перегреется. Мощность, рассеиваемая в проводе, будет в этом случае P = 1000 Вт. Для ограничения чрезмерных токов используются предохранители и автоматические выключатели. (См. Рисунок 1 и рисунок 2.) Каждое устройство автоматически размыкает цепь, когда постоянный ток превышает безопасные пределы.
Рис. 1. (a) Предохранитель имеет металлическую полосу с низкой температурой плавления, которая при перегреве чрезмерным током навсегда разрывает соединение цепи с источником напряжения. (b) Автоматический выключатель — это автоматический, но восстанавливаемый электрический выключатель. Показанный здесь имеет биметаллическую полосу, которая изгибается вправо и в выемку при перегреве. Затем пружина толкает металлическую полосу вниз, разрывая электрическое соединение в точках.
Рис. 2. Схема цепи с предохранителем или автоматическим выключателем. Предохранители и автоматические выключатели действуют как автоматические выключатели, которые размыкаются, когда постоянный ток превышает желаемые пределы.
Предохранители и автоматические выключатели для обычных бытовых напряжений и токов относительно просты в изготовлении, но предохранители для больших напряжений и токов имеют особые проблемы. Например, когда автоматический выключатель пытается прервать подачу высоковольтного электричества, через его точки может проскочить искра, которая ионизирует воздух в зазоре и позволяет току продолжать течь.В крупных автоматических выключателях, используемых в системах распределения электроэнергии, используется изолирующий газ и даже для гашения таких искр используются струи газа. Здесь переменный ток более безопасен, чем постоянный, поскольку переменный ток проходит через ноль 120 раз в секунду, что дает возможность быстро погасить эти дуги.
Электрические токи, протекающие через людей, производят чрезвычайно разнообразные эффекты. Электрический ток можно использовать для блокирования боли в спине. Возможность использования электрического тока для стимуляции мышечной активности парализованных конечностей, что, возможно, позволит людям с параличом нижних конечностей ходить, изучается.Телевизионные драматизации, в которых электрические разряды используются, чтобы вывести жертву сердечного приступа из состояния фибрилляции желудочков (чрезвычайно нерегулярное, часто со смертельным исходом, сердцебиение), более чем обычны. Тем не менее, большинство смертельных случаев от поражения электрическим током происходит из-за того, что ток вызывает фибрилляцию сердца. Электрокардиостимулятор заставляет сердце биться правильно. Некоторые смертельные удары током не вызывают ожогов, но бородавки можно безопасно сжечь электрическим током (хотя сейчас более распространено замораживание с использованием жидкого азота).Конечно, этим разрозненным эффектам можно найти последовательные объяснения. Основными факторами, от которых зависят последствия поражения электрическим током, являются
.- Сумма тока I
- Путь, пройденный нынешним
- Продолжительность шока
- Частота f тока ( f = 0 для постоянного тока)
В таблице 1 приведены эффекты поражения электрическим током в зависимости от тока для типичного случайного поражения электрическим током.Эффекты относятся к сотрясению, которое проходит через туловище, длится 1 с и вызывается мощностью 60 Гц.
Рис. 3. Электрический ток может вызывать мышечные сокращения с различными эффектами. (а) Пострадавший «отбрасывается» назад из-за непроизвольных сокращений мышц, разгибающих ноги и туловище. (б) Пострадавший не может отпустить проволоку, которая стимулирует все мышцы руки. Смыкающие пальцы сильнее, чем разжимающие.
Ток (мА) | Эффект |
---|---|
1 | Порог ощущения |
5 | Максимальный безопасный ток |
10–20 | Начало устойчивого мышечного сокращения; не может отпустить на время шока; сокращение мышц груди может привести к остановке дыхания во время шока |
50 | Начало боли |
100–300 + | Возможна фибрилляция желудочков; часто со смертельным исходом |
300 | Начало ожога в зависимости от концентрации тока |
6000 (6 А) | Начало устойчивого желудочкового сокращения и паралича дыхания; оба прекращаются, когда заканчивается шок; сердцебиение может вернуться в норму; используется для дефибрилляции сердца |
Наши тела являются относительно хорошими проводниками из-за воды в наших телах.Учитывая, что большие токи будут протекать через секции с меньшим сопротивлением (подробнее будет обсуждаться в следующей главе), электрические токи предпочтительно протекают по путям в теле человека, которые имеют минимальное сопротивление на прямом пути к земле. Земля — естественный сток электронов. Ношение изолирующей обуви — требование во многих профессиях — препятствует прохождению электронов, обеспечивая на этом пути большое сопротивление. При работе с мощными инструментами (сверлами) или в опасных ситуациях убедитесь, что вы не обеспечиваете путь для прохождения тока (особенно через сердце).
Очень слабые токи проходят через тело безвредно и не чувствуются. Это происходит с вами регулярно без вашего ведома. Порог ощущения составляет всего 1 мА, и, несмотря на неприятные ощущения, удары, по-видимому, безвредны для токов менее 5 мА. Во многих правилах безопасности значение 5 мА является максимально допустимым током. Ток от 10 до 20 мА и выше может стимулировать длительные мышечные сокращения так же, как обычные нервные импульсы. Иногда люди говорят, что они были сбиты с толку от шока, но на самом деле произошло то, что некоторые мышцы сократились, заставляя их двигаться не по их собственному выбору.(См. Рис. 3 (а).) Более пугающим и потенциально более опасным является эффект «не могу отпустить», проиллюстрированный на рис. 3 (б). Мышцы, закрывающие пальцы, сильнее, чем мышцы, открывающие их, поэтому рука непроизвольно смыкается на проводе, сотрясающем ее. Это может продлить шок на неопределенный срок. Это также может быть опасно для человека, пытающегося спасти жертву, потому что рука спасателя может сомкнуться на запястье жертвы. Обычно лучший способ помочь пострадавшему — это сильно ударить кулаком / ударом / встряхнуть изолятором или бросить изолятор в кулак.Современные электрические ограждения, используемые в вольерах для животных, теперь включаются и выключаются, чтобы люди, прикоснувшиеся к ним, могли освободиться, что делает их менее смертоносными, чем в прошлом.
Сильные токи могут повлиять на сердце. Его электрические паттерны могут быть нарушены, так что он будет биться нерегулярно и неэффективно в состоянии, которое называется «фибрилляция желудочков». Это состояние часто сохраняется после шока и приводит к летальному исходу из-за нарушения кровообращения. Порог фибрилляции желудочков составляет от 100 до 300 мА.При токе около 300 мА и выше разряд может вызвать ожоги, в зависимости от концентрации тока — чем более концентрированный, тем выше вероятность ожога.
Очень большие токи заставляют сердце и диафрагму сокращаться на время разряда. И сердце, и дыхание останавливаются. Интересно, что оба часто возвращаются к нормальному состоянию после шока. Электрические паттерны в сердце полностью стираются, так что сердце может начать заново при нормальном биении, в отличие от постоянного нарушения, вызванного меньшими токами, которые могут вызвать фибрилляцию желудочков в сердце.Последнее похоже на каракули на доске, тогда как первое полностью стирает их. В телесериалах о поражении электрическим током, используемом для выведения жертвы сердечного приступа из состояния фибрилляции желудочков, также показаны большие лопасти. Они используются для распределения тока, проходящего через пострадавшего, чтобы снизить вероятность ожогов.
Ток является основным фактором, определяющим серьезность удара (при условии, что другие условия, такие как путь, продолжительность и частота, являются фиксированными, например, в таблице и в предыдущем обсуждении).Более высокое напряжение более опасно, но, поскольку I = V / R , сила удара зависит от комбинации напряжения и сопротивления. Например, у человека с сухой кожей сопротивление составляет около 200 кОм. Если он соприкасается с 120-В переменного тока, через него безвредно проходит ток I = (120 В) / (200 кОм) = 0,6 мА. Тот же человек, намоченный насквозь, может иметь сопротивление 10,0 кОм, и те же 120 В будут производить ток 12 мА — выше порога «не отпускать» и потенциально опасен.
Большая часть сопротивления тела находится в его сухой коже. Во влажном состоянии соли переходят в ионную форму, что значительно снижает сопротивление. Внутренняя часть тела имеет гораздо меньшее сопротивление, чем сухая кожа, из-за всех содержащихся в ней ионных растворов и жидкостей. Если обойти сопротивление кожи, например, с помощью внутривенной инфузии, катетера или открытого электрокардиостимулятора, человек становится чувствительным к микрошоку . В этом состоянии токи около 1/1000 от перечисленных в таблице 1 производят аналогичные эффекты.Во время операции на открытом сердце можно использовать ток до 20 мкА, чтобы успокоить сердце. Строгие требования к электробезопасности в больницах, особенно в хирургии и интенсивной терапии, связаны с вдвойне менее уязвимыми пациентами, чувствительными к микрошоку. Разрыв кожи уменьшил его сопротивление, поэтому одно и то же напряжение вызывает больший ток, а гораздо меньший ток имеет больший эффект.
Рис. 4. График средних значений порога ощущения и тока «не могу отпустить» в зависимости от частоты.Чем ниже значение, тем более чувствительно тело к этой частоте.
Другими факторами, кроме силы тока, которые влияют на серьезность разряда, являются его путь, продолжительность и частота переменного тока. Путь имеет очевидные последствия. Например, сердце не поражается электрическим током через мозг, который может использоваться для лечения маниакальной депрессии. И это общая правда, что чем больше продолжительность шока, тем сильнее его последствия. На рисунке 4 представлен график, иллюстрирующий влияние частоты на удар.Кривые показывают минимальный ток для двух различных эффектов как функцию частоты. Чем ниже необходимый ток, тем чувствительнее тело к этой частоте. По иронии судьбы, организм наиболее чувствителен к частотам, близким к обычным частотам 50 или 60 Гц. Тело немного менее чувствительно к постоянному току ( f = 0), что мягко подтверждает утверждения Эдисона о том, что переменный ток представляет большую опасность. На все более высоких частотах организм становится все менее чувствительным к любым воздействиям, затрагивающим нервы.Это связано с максимальной скоростью, с которой нервы могут активироваться или стимулироваться. Электрический ток на очень высоких частотах распространяется только по поверхности человека. Таким образом, бородавку можно сжечь током очень высокой частоты, не вызывая остановки сердца. (Не пытайтесь делать это дома с переменным током 60 Гц!) Некоторые из зрелищных демонстраций электричества, в которых дуги высокого напряжения проходят через воздух и тела людей, используют высокие частоты и малые токи. (См. Рис. 5.) Устройства и методы электробезопасности подробно описаны в разделе «Электробезопасность: системы и устройства».
Рис. 5 Опасна ли эта электрическая дуга? Ответ зависит от частоты переменного тока и мощности. (Источник: Химич Алекс, Wikimedia Commons)
Сводка раздела
- Существует два типа опасности поражения электрическим током: термическая (чрезмерная мощность) и поражение электрическим током (электрический ток через человека).
- Сила удара определяется током, длиной пути, продолжительностью и частотой переменного тока.
- В таблице 1 перечислены опасности поражения электрическим током в зависимости от силы тока.
- На рис. 5 показан график порогового тока для двух опасностей в зависимости от частоты.
Концептуальные вопросы
- С помощью омметра студент измеряет сопротивление между различными точками своего тела. Он обнаружил, что сопротивление между двумя точками на одном пальце примерно такое же, как сопротивление между двумя точками на противоположных руках — обе составляют несколько сотен тысяч Ом. Кроме того, сопротивление уменьшается, когда большее количество кожи контактирует с щупами омметра. Наконец, наблюдается резкое падение сопротивления (до нескольких тысяч Ом), когда кожа влажная.Объясните эти наблюдения и их значение для кожи и внутреннего сопротивления человеческого тела.
- Каковы две основные опасности электричества?
- Почему короткое замыкание не представляет опасности поражения электрическим током?
- От чего зависит тяжесть шока? Можете ли вы сказать, что определенное напряжение опасно, без дополнительной информации?
- Электрифицированная игла используется для выжигания бородавок, при этом цепь замыкается путем усаживания пациента на большую пластину приклада.Почему эта тарелка большая?
- Некоторые операции выполняются при прохождении электричества высокого напряжения от металлического скальпеля через разрезаемую ткань. Учитывая природу электрических полей на поверхности проводников, почему вы ожидаете, что большая часть тока будет течь от острого края скальпеля? Как вы думаете, используется переменный ток высокой или низкой частоты?
- На некоторых устройствах, которые часто используются в ванных комнатах, например в фенах, есть сообщения о безопасности, в которых говорится: «Не используйте, когда ванна или раковина наполнены водой.«Почему это так?
- Нам часто советуют не щелкать электрическими выключателями мокрыми руками, сначала вытрите руки. Также рекомендуется никогда не поливать электрический огонь водой. Почему это так?
- Перед тем, как приступить к работе на линии электропередачи, линейные монтеры будут касаться линии тыльной стороной руки в качестве окончательной проверки нулевого напряжения. Почему тыльная сторона руки?
- Почему сопротивление влажной кожи намного меньше, чем сопротивление сухой, и почему кровь и другие жидкости организма имеют низкое сопротивление?
- Может ли человек, получающий внутривенное вливание (в / в) быть чувствительным к микрошоку?
- Принимая во внимание небольшие токи, которые вызывают опасность поражения электрическим током, и большие токи, которые прерывают автоматические выключатели и предохранители, как они играют роль в предотвращении опасности поражения электрическим током?
Задачи и упражнения
1.(a) Сколько мощности рассеивается при коротком замыкании 240 В переменного тока через сопротивление 0,250 Ом? б) Какой ток течет?
2. Какое напряжение возникает при коротком замыкании 1,44 кВт через сопротивление 0,100 Ом?
3. Найдите ток, протекающий через человека, и определите вероятное воздействие на него, если он коснется источника переменного тока напряжением 120 В: (а) если он стоит на резиновом коврике и предлагает полное сопротивление 300 кОм; (б) если она стоит босиком на мокрой траве и имеет сопротивление всего 4000 кОм.
4. Принимая ванну, человек касается металлического корпуса радиоприемника. Путь через человека к водосточной трубе и земле имеет сопротивление 4000 Ом. Какое наименьшее напряжение на корпусе радио может вызвать фибрилляцию желудочков?
5. Глупо пытаясь выудить горящий кусок хлеба из тостера металлическим ножом для масла, человек контактирует с напряжением 120 В переменного тока. Он даже не чувствует этого, потому что, к счастью, на нем туфли на резиновой подошве. Какое минимальное сопротивление пути, по которому ток проходит через человека?
6.(а) Во время операции ток величиной всего 20,0 мкА, приложенный непосредственно к сердцу, может вызвать фибрилляцию желудочков. Если сопротивление обнаженного сердца составляет 300 Ом, какое наименьшее напряжение представляет эту опасность? (b) Означает ли ваш ответ, что необходимы особые меры предосторожности при работе с электричеством?
7. (a) Каково сопротивление короткого замыкания 220 В переменного тока, которое генерирует пиковую мощность 96,8 кВт? (b) Какой была бы средняя мощность, если бы напряжение составляло 120 В переменного тока?
8.Дефибриллятор сердца пропускает 10,0 А через туловище пациента в течение 5,00 мс в попытке восстановить нормальное сердцебиение. а) Сколько заряда прошло? (б) Какое напряжение было приложено, если было рассеяно 500 Дж энергии? (c) Какое сопротивление было на пути? (d) Найдите повышение температуры в 8,00 кг пораженной ткани.
9. Integrated Concepts Короткое замыкание в шнуре электроприбора на 120 В имеет сопротивление 0,500 Ом. Рассчитайте превышение температуры 2,00 г окружающих материалов, принимая их удельную теплоемкость равной 0.200 кал / г ºC и что автоматическому выключателю требуется 0,0500 с для отключения тока. Это может быть опасно?
10. Температура увеличивается на 860ºC. Очень вероятно, что это повредит.
11. Создайте свою проблему Представьте себе человека, работающего в среде, где электрические токи могут проходить через ее тело. Постройте задачу, в которой вы рассчитываете сопротивление изоляции, необходимое для защиты человека от повреждений. Среди вещей, которые следует учитывать, — напряжение, которому может подвергнуться человек, вероятное сопротивление тела (сухой, влажный,…) и допустимые токи (безопасные, но ощутимые, безопасные и неощутимые,…).
Глоссарий
- термическая опасность:
- опасность, при которой электрический ток вызывает нежелательные тепловые эффекты
- опасность поражения электрическим током:
- при прохождении электрического тока через человека
- короткое замыкание:
- , также известный как «короткий» путь с низким сопротивлением между выводами источника напряжения
- чувствительность к микрошоку:
- состояние, при котором сопротивление кожи человека обходится, возможно, с помощью медицинской процедуры, что делает человека уязвимым для поражения электрическим током при токах около 1/1000 от обычно необходимого уровня
Избранные решения проблем и упражнения
1.