Схема генератора бестопливного: Практические схемы бестопливных генераторов | Альтернативная энергия, Генераторы, Электронная схема

Разное
alexxlab

Бестопливный генератор своими руками: схема сборки

Бестопливный генератор своими руками + видео

Невозможно представлять современный мир без применения электрической энергии. В связи с ее повсеместным использованием разрабатывают и выпускают бестопливные генераторы, своими руками которые сделать несложно. Тут вы узнаете о том, что это такое, где и как его применяют, освещены конструкционные особенности, а еще есть инструкции, как изготовить устройство собственноручно. Также тут есть схемы генераторов разных типов.

Бестопливный генератора – что это такое? Это несложное устройство сделано для генерации электрической энергии без применения разных типов горючего. Он функционирует по принципу неодимовых магнитов.

В обычном двигателе магнитное поле образуется за счет электрических катушек, как правило, из алюминия или меди. Такие двигатели постоянно нуждаются в электрическом питании для получения магнитного поля. Тогда потери энергии колоссальные. Но генератор бестопливного типа не содержит катушек из этих материалов. следовательно, потери получатся минимальными. Он применяет постоянное магнитное поле для получения требуемой силы двигательного перемещения.

Содержание:

Общие сведения

Обратите внимание, что такая концепция магнитного от постоянных магнитов стала использоваться на практике лишь после добавления неодимовых магнитов, которые способны функционировать лучше на полной мощности, нежели предыдущие ферритовые магниты. Главным достоинством является то, что устройство не требует постоянно снабжения электрической энергией или даже подзарядки.

Чтобы найти альтернативные методы генерации электрической энергии, есть множество альтернатив и нетрадиционных энергетических источников, которые тоже возобновляемые. Одной из подобных альтернатив стала выработка электрической энергии из двигателя бестопливного типа в изолированной системе выработки электрической энергии с малыми тратами на техобслуживание. Бестопливный прибор (равно как и генератор) – это двигатель, который будет вырабатывать электрическую энергию круглые сутки без топлива (масло, солнце, газ, бензин и дизель). Приводным приспособлением является движок постоянного тока, который приводят в действие аккумулятором (12 В или больше). Батарейка приводит в движение электрический двигатель постоянного тока, и он начинает вращать генератор тока (переменного) для создания электрической энергии и в то же время посредством диода будет заряжать батарею.

К числу энергетических источников, которые способны функционировать без углекислого газа (СО2), можно отнести ветер, волны или прилив осмотической и фотоэлектрической энергии. Но такие генераторы электрической энергии по-прежнему являются самыми надежными источниками энергии с малыми расхода по эксплуатации, которые даже в определенных случаях намного лучше солнечных батарей. Применение недорогостоящих стандартных энергетических источников, таких как горючее, будет оставаться главным источником энергии до следующего десятилетия, несмотря на негативное влияние на окружающую среду.

Использование такого двигателя бестопливного типа (или же генератора) для выработки электрической энергии ограничено мощностью движка постоянного тока и устройства с переменным током. Это будет подразумевать, что наличие движка постоянного тока и генератора с огромной мощностью дает бестопливным двигателям свои возможности. Как показали исследования, потенциал бестопливного двигателя по всему миру больше чем в 5 раз превышает потенциал солнца и ветра, так как он работает круглосуточно, каждый день, во всех точках планеты.

Подробности

Как и где применяют БТГ генератор

Есть много различных методов генерации энергии от бестопливного генератора или двигателя. В каждой области использование такого устройства, вне всяких сомнений, приносит пользу. Ниже мы привели краткие описания определенных сфер.

На дороге

Бестопливный генератор электроэнергии своими руками сделать нетрудно, и он может отлично заменить двигатели дизельного типа, которые применяют в подавляющем большинство тяжелых современных транспортных средств, а именно автобусы, грузовые автомобили, поезда, силовые переносные крупногабаритные двигатели. Также в такой список входит много карьерных и сельскохозяйственных транспортных средств.

В воздухе

И дизельные, и бензиновые двигатели, которые применяют в самолетах, можно заменить на альтернативные энергетические источники, и даже на бестопливные электрогенераторы.

На воде

Бестопливные устройства могут стать достойной заменой даже для высокоскоростных двигателей, которые есть у кораблей, яхт и линий вдоль открытого моря.

Под землей

Генераторы и двигатели бестопливного типа тоже могут заменить дизельные движки, а еще устройства, которые применяют при добыче полезных ископаемых по всему миру. Аналогичным образом приборы бестопливного типа заменяют двигатели, которые используют для добычи природных ресурсов, а именно драгоценные металлы, уголь, железная руда и попутный нефтяной газ.

В медучреждениях

Устройства способны заменить аварийные генераторы (резервные), которые должны быть в каждом большом медицинском учреждении или даже в больнице, из-за вероятности наличия критических ситуаций.

В центрах обработки данных

Генераторы бестопливного типа могут быть применены для компьютеров, а еще если не заряжается телефон, то генератор станет прекрасным зарядным устройством для мобильных аппаратов. Когда системы и серверы выходят из строя, связь может быть утеряна, рабочий процесс остановится, а данные будут потеряны и даже весь рабочий процесс может быть остановлен в полной мере. Еще бестопливные устройства электрической энергии можно устанавливать на боковой стороне двухколесного средства передвижения. Это требуется сделать таким образом, чтобы по мере движения транспорта вентилятор начинал вращаться и вырабатывал дополнительную электрическую энергию.

Обратите внимание, что, когда двигатели постоянного тока с мощностью больше 500 лс подключены к устройству переменного тока, мощность которых ниже, нежели у двигателей постоянного тока, можно получить выходную мощность генератора по максимуму.

Конструкционные особенности

Обычный бестопливный генератор сделать из ротора и статора. Именно статор в машине не двигается и обычно представляет собой внешнюю раму машины. Ротор можно свободно двигаться и, как правило, расположен во внутренней части машины. Они оба сделаны из ферримагнитных материалов. Прорези проделаны по внутренней периферии статора и внешней роторной периферии. Проводники размещены в определенных пазах статора или даже ротора. Они между собой связаны, создавая круглые обмотки. Та, в которой индуцируется напряжение, называют якорной обмоткой, а еще это название носит ток, который по ней передается. Постоянные магниты применяются в определенных машинах для того, чтобы обеспечивать основной поток машин.

Устройство ТРU от Стивена Марка кардинально отличается остальных бестопливных аппаратов своей необычной конструкцией. Этот бестопливный генератор своими руками не сделаешь, но он не является обладателем резонаторов радиочастотного типа. Рабочая часть прибора сделана из металлического кольца (его диаметр примерно 20 см), на которое надеты катушки, изготовленные из многожильного провода большой толщины. Автор не раз показал свое изобретение на публике, но после оригинальную разработку было решено строго засекретить. И все же благодаря его последователям в свет вышла еще одна версия — Оttр Rоnеttе, которая обладала отличиями от оригинала. У нее было пару колец из пластика, к которым прикрепляют толстый парный провод. Сами провода соединяли крест-накрест.

Изготовление бестопливного генератора собственноручно

Есть два наиболее распространенных метода, как изготовить устройство своими руками – сухой и мокрый. Для последнего потребуется аккумулятор, и в то время как при применении сухого требуются батареи.

Мокрый метод

Требуются такие составляющие:

  • Аккумулятор.
  • Зарядное устройство требуемого калибра.
  • Усилитель мощности.
  • Трансформатор для тока переменного типа.

Аккумулятор будет служить в роли накопителя энергии и еще охраняет ее. Трансформатор требуется для генерации постоянного сигнала электрического тока. Усилитель же будет повышать уровень токовой подачи, потому что начальная мощность аккумулятора может быть 12 или 24 В. Зарядное устройство потребуется для бесперебойной и постоянной работы аппарата. Для начала требуется подключать трансформатор к постоянной батарее или сети, а после и к усилителю мощности. После этого требуется подключать датчик для расширения до схемы зарядного устройства. После этого нужно подключить датчик обратно до аккумулятора.

Сухой метод

Принцип действия сухого прибора состоит в применении конденсатора. Для того, чтобы создать такое устройство, требуется:

  • Трансформатор.
  • Прототип генератора.

Обратите внимание, что этот метод изготовления устройства является оптимальным, потому что его срок эксплуатации можно насчитывать минимум 4 года без зарядки.

Итак, для начала требуется соединять трансформатор и прототип посредством специальных проводников незатухающего типа. Рекомендовано это делать посредством сварки для создания по максимуму прочного соединения. Чтобы производить контроль выполненной работы, требуется применять динатрон. Еще на сегодняшний день выходят новые схемы бестопливного генератора, которые предусматривают подключение к определенным батареям и остальным генераторам. Применение бестопливного устройства стало современным, более экологичным и экономичным решением, но изготовление и их выбор является задачей, которая требует особенного внимания и ответственности.

Рейтинг

( 41 оценка, среднее 1.46 из 5 )

15 20 548.

Олег Сомов/ автор статьи

Опытный строитель с более чем 10 летнем стажем Каркасных и Фахверковых домов из клеенного бруса, делюсь опытом с читателями моего сайта, жмите звездочку и делитесь с друзьями, если было полезно!

Понравилась статья? Поделиться с друзьями:

Как сделать бестопливный генератор своими руками

Дата публикации: 25 февраля 2019

Содержание

  • Принцип работы бестопливного генератора Адамса
  • Как сделать бестопливный генератор своими руками
  • Применение бестопливных агрегатов

Бестопливные генераторы — воплощение мечты о вечном двигателе.

Это приборы, которые способны улавливать различные виды свободной энергии и преобразовывать ее в электрический ток.

Принцип работы бестопливного генератора Адамса

Одна из наиболее популярных моделей преобразует энергию в индукционный ток. Впервые ее построил ученый Адамс, в честь которого она и получила свое название.

Схема простого бестопливного генератора (у Бедини тот же принцип действия):

Базовые комплектующие агрегата Адамса следующие:

  • генератор, внутри которого возникает электромагнитное поле;
  • инвертор, который преобразовывает магнитные импульсы в переменный ток;
  • аккумуляторы, которые накапливают энергию для ее дальнейшего использования.

Принцип работы прибора основан на явлении электромагнитной индукции. Вращение мотора зависит от силы, с которой он отталкивается от полюсов магнитов. Основным конструктивным элементом является многополюсный безредукторный генератор прямого вращения. Магниты устанавливаются на внешний край генератора.

Их число зависит от желаемой мощности. У подобных агрегатов очень высокое КПД — около 90%. При необходимости они хорошо соединяются друг с другом, образуя единую автономную сеть.

Как сделать бестопливный генератор своими руками

Самый примитивный агрегат типа Адамса несложно собрать дома. Он будет не слишком мощным, но позволит испробовать модель, а также сможет зарядить мобильный телефон.

Составные компоненты

Для изготовления вам понадобятся:

  • Неодимовые магниты. Их понадобится около 15 штук. Желательно, чтобы все магниты были одного размера. От их величины зависит мощность вашего агрегата.
  • Медный провод.
  • Пара катушек. Можно намотать их самостоятельно, а можно взять готовые из любых имеющихся моторов.
  • Лист стали потребуется для изготовления рамочного корпуса.
  • Болты, шайбы, гвозди. Фурнитура понадобится для фиксации мелких деталей.

Сборка

Процесс сборки бестопливного генератора на неодимовых магнитах состоит всего из нескольких шагов:

  1. В основании катушки необходимо укрепить линейный магнит. Для этого потребуется просверлить отверстие и зафиксировать все при помощи болта.
  2. Остальные магниты необходимо расположить по внешнему краю. (Соблюдайте полярность!)
  • Если вы изготавливаете катушки самостоятельно, то намотайте на каждую изолированный медный провод диаметром 1.25 мм. Наматывать нужно в направлении снизу вверх.
  • Из листа стали изготовьте рамку для корпуса. Ее размеры зависят от размеров катушек. Катушки необходимо установить так, чтобы с торца оставалось пространство для свободного вращения.
  • Прибор готов, осталось его протестировать. Подсоедините мультиметр и покрутите магниты. Если возникло напряжение на концах обмотки, то все получилось.

Применение бестопливных агрегатов

Бестопливные генераторы энергии Адамса могут применяться как для автономного электроснабжения домов, так и в судоходстве, автомобилестроении и даже космонавтике. Их основное преимущество перед другими источниками энергии заключается в том, что им не требуется никакое сырье для переработки и они не зависят от погодных условий (как гелиостанции и ветрогенераторы).

Ниже перечислены другие плюсы подобных устройств:

  • «Топливом» служит кинетическая энергия.
  • Имеют очень высокий КПД.
  • Имеют компактные размеры и просты в изготовлении.
  • Примерный срок службы генераторов — два десятка лет.
  • Никак не воздействуют на здоровье людей и окружающую среду.
  • Могут работать как в помещении, так и снаружи, устойчивы к воздействию атмосферных осадков.

Если вас интересует альтернативная энергетика, бестопливные электрические генераторы бесспорно заслуживают вашего внимания. Они хорошо дополняют другие источники альтернативной энергии.

Изготовление генератора с автономным питанием | Проекты самодельных схем

Генератор с автономным питанием — это постоянно работающее электрическое устройство, предназначенное для бесконечной работы и непрерывного производства электроэнергии, которая обычно больше по величине, чем входной источник питания, через который он работает.

Кто бы не хотел, чтобы мотор-генератор с автономным питанием работал дома и питал желаемые бытовые приборы без остановки, абсолютно бесплатно. Мы обсудим детали нескольких таких схем в этой статье.

Энтузиаст свободной энергии из Южной Африки, который не хочет раскрывать свое имя, щедро поделился подробностями своего твердотельного автономного генератора со всеми заинтересованными исследователями свободной энергии.

Когда система используется с инверторной схемой, выходная мощность генератора составляет около 40 Вт.

Система может быть реализована в нескольких различных конфигурациях.

Первая версия, обсуждаемая здесь, способна одновременно заряжать три батареи 12, а также поддерживать генератор для постоянной непрерывной работы (пока, конечно, батареи не потеряют способность зарядки/разрядки)

Предлагаемый генератор с автономным питанием предназначен для работы днем ​​и ночью, обеспечивая непрерывную подачу электроэнергии, как и наши солнечные панели.

Первоначальный блок был сконструирован с использованием 4 катушек в качестве статора и центрального ротора с 5 магнитами, встроенными по окружности, как показано ниже:

Показанная красная стрелка указывает на регулируемый зазор между ротором и катушками, который может изменяется путем ослабления гайки, а затем перемещения узла катушки ближе или дальше от магнитов статора для получения желаемых оптимизированных выходных сигналов. Зазор может быть от 1 мм до 10 мм.

Узел ротора и механизм должны быть чрезвычайно точными с точки зрения их выравнивания и легкости вращения, и поэтому должны быть изготовлены с использованием прецизионных станков, таких как токарный станок.

Материал, используемый для этого, может быть прозрачным акрилом, и сборка должна включать 5 наборов по 9 магнитов, закрепленных внутри цилиндрической трубы, подобной полостям, как показано на рисунке.

Верхнее отверстие этих 5 цилиндрических барабанов защищено пластиковыми кольцами, извлеченными из тех же цилиндрических труб, чтобы гарантировать, что магниты будут плотно зафиксированы в соответствующих положениях внутри цилиндрических полостей.

Очень скоро 4 катушки были увеличены до 5, в которых новая добавленная катушка имела три независимых обмотки. Конструкции будут пониматься постепенно, когда мы пройдемся по различным принципиальным схемам и объясним, как работает генератор. Первую принципиальную схему можно увидеть ниже.

Батарея, обозначенная буквой «А», питает цепь. Ротор «С», состоящий из 5 магнитов, вручную перемещается так, что один из магнитов приближается к катушкам.

Набор катушек «B» включает в себя 3 независимые обмотки на одном центральном сердечнике, и магнит, проходящий мимо этих трех катушек, генерирует внутри них небольшой ток.

Ток в катушке номер «1» проходит через резистор «R» в базу транзистора, заставляя его включиться. Энергия, проходящая через катушку транзистора «2», позволяет ей превратиться в магнит, который толкает диск ротора «С» на своем пути, вызывая вращательное движение ротора.

Это вращение одновременно индуцирует обмотку тока «3», которая выпрямляется через синие диоды и передается обратно для зарядки батареи «А», восполняя почти весь ток, потребляемый этой батареей.

Как только магнит внутри ротора «С» отходит от катушек, транзистор выключается, восстанавливая за короткое время напряжение на коллекторе вблизи линии питания +12 Вольт.

Истощает ток катушки «2». Из-за расположения катушек напряжение на коллекторе увеличивается примерно до 200 вольт и выше.

Однако этого не происходит, потому что выход подключен к пяти последовательным батареям, которые снижают нарастающее напряжение в соответствии с их общим номиналом.

Аккумуляторы имеют последовательное напряжение приблизительно 60 вольт (что объясняет, почему был встроен мощный быстродействующий высоковольтный транзистор MJE13009). диод начинает включаться, высвобождая электричество, накопленное в катушке, в аккумуляторную батарею. Этот импульс тока проходит через все 5 батарей, заряжая каждую из них. Проще говоря, это представляет собой схему генератора с автономным питанием.0003

В прототипе в качестве нагрузки для длительных неустанных испытаний использовался 12-вольтовый 150-ваттный инвертор, освещающий 40-ваттную сетевую лампу: приемные катушки:

Катушки «B», «D» и «E» активируются одновременно тремя отдельными магнитами. Электроэнергия, генерируемая всеми тремя катушками, передается на 4 синих диода для производства постоянного тока, который применяется для зарядки батареи «А», питающей цепь.

Дополнительный вход в приводную батарею в результате добавления 2 дополнительных приводных катушек к статору позволяет машине стабильно работать в виде машины с автономным питанием, бесконечно поддерживая напряжение батареи «А».

Единственной движущейся частью этой системы является ротор диаметром 110 мм, представляющий собой акриловый диск толщиной 25 мм, установленный на шарикоподшипниковом механизме, извлеченном из выброшенного жесткого диска вашего компьютера. Комплектация выглядит следующим образом:

На изображениях диск кажется полым, однако на самом деле это твердый, кристально чистый пластик. Отверстия просверлены на диске в пяти местах, равномерно распределенных по всей окружности, то есть с шагом 72 градуса.

5 первичных отверстий, просверленных на диске, предназначены для удержания магнитов, которые находятся в группах по девять круглых ферритовых магнитов. Каждый из них имеет диаметр 20 мм и высоту 3 мм, образуя стопки магнитов общей высотой 27 мм в длину и диаметром 20 мм. Эти стопки магнитов размещены таким образом, что их северные полюса выступают наружу.

После того, как магниты установлены, ротор помещается внутрь полоски пластиковой трубы, чтобы плотно зафиксировать магниты на месте во время быстрого вращения диска. Пластиковая труба зажимается ротором с помощью пяти крепежных болтов с потайными головками.

Катушки катушки имеют длину 80 мм и диаметр конца 72 мм. Средний шпиндель каждого змеевика изготовлен из пластиковой трубы длиной 20 мм с внешним и внутренним диаметром 16 мм. с толщиной стенок 2 мм.

После завершения намотки катушки этот внутренний диаметр заполняется рядом сварочных стержней со снятым сварочным покрытием. Впоследствии они обволакиваются полиэфирной смолой, но отличной альтернативой может стать и цельный брусок из мягкого железа:

Три жилы проволоки, составляющие катушки «1», «2» и «3», имеют диаметр 0,7 мм и наматываются друг на друга перед намоткой на катушку «В». Этот метод бифилярной намотки создает намного более тяжелый композитный жгут проводов, который можно эффективно просто намотать на катушку. Намотчик, показанный выше, работает с патроном, чтобы удерживать сердечник катушки для обеспечения намотки, тем не менее, можно использовать любой тип основного намотчика.

Конструктор выполнил скручивание проволоки, натянув 3 пряди проволоки, каждая из которых берет свое начало от независимой катушки 500-граммового пучка.

Три жилы плотно закреплены на каждом конце, провода прижаты друг к другу на каждом конце с трехметровым расстоянием между зажимами. После этого провода закрепляют в центре и приписывают 80 витков к миделю. Это позволяет сделать 80 витков для каждого из двух 1,5-метровых пролетов, расположенных между зажимами.

Набор скрученных или намотанных проводов наматывается на временную катушку, чтобы сохранить его в чистоте, потому что это скручивание необходимо повторить еще 46 раз, поскольку все содержимое катушек с проволокой потребуется для одной композитной катушки:

Следующие 3 метра трех проводов затем зажимаются и 80 витков наматываются в среднее положение, но в этом случае витки располагаются в противоположном направлении. Даже сейчас реализованы точно такие же 80 витков, но если предыдущая обмотка была «по часовой стрелке», то эта обмотка переворачивается «против часовой стрелки».

Это особое изменение направления витков обеспечивает полный ассортимент витых проводов, в которых направление витка становится противоположным через каждые 1,5 метра по всей длине. Так устроен серийно выпускаемый литцендрат.

Этот особенный набор скрученных проводов с великолепным внешним видом теперь используется для намотки катушек. В одном фланце катушки, точно возле средней трубки и сердечника, просверливается отверстие, и через него вставляется начало проволоки. Затем проволоку с силой сгибают под углом 90 градусов и наматывают на вал катушки, чтобы начать намотку катушки.

Намотка пучка проводов выполняется с большой осторожностью рядом друг с другом по всему валу катушки, и вы увидите 51 номер намотки вокруг каждого слоя, а следующий слой наматывается прямо поверх этого самого первого слоя, идя снова вернуться к началу. Убедитесь, что витки этого второго слоя располагаются точно над верхней частью обмотки под ними.

Это может быть несложно, поскольку пакет проводов достаточно толстый, чтобы его можно было легко разместить. Если хотите, вы можете попробовать обернуть первый слой толстой белой бумагой, чтобы второй слой был отчетливым при переворачивании. Вам потребуется 18 таких слоев, чтобы закончить катушку, которая в конечном итоге будет весить 1,5 кг, а готовая сборка может выглядеть примерно так, как показано ниже: up предназначен для создания фантастической магнитной индукции на двух других катушках всякий раз, когда на одну из катушек подается напряжение питания.

Эта обмотка в настоящее время включает катушки 1,2 и 3 принципиальной схемы. Вам не нужно постоянно беспокоиться о маркировке концов каждой жилы провода, поскольку вы можете легко идентифицировать их с помощью обычного омметра, проверив непрерывность на концах конкретных проводов.

Катушка 1 может использоваться как пусковая катушка, которая будет включать транзистор в нужные периоды времени. Катушка 2 может быть управляющей катушкой, на которую подается питание от транзистора, а катушка 3 может быть одной из первых выходных катушек:

Катушки 4 и 5 представляют собой прямые пружинные катушки, которые подключены параллельно катушке привода 2. Они помогают усилить привод и поэтому важны. Катушка 4 имеет сопротивление постоянному току 19 Ом, а сопротивление катушки 5 может составлять около 13 Ом.

Тем не менее, в настоящее время ведутся исследования, чтобы определить наиболее эффективное расположение катушек для этого генератора, и, возможно, дополнительные катушки могут быть идентичны первой катушке, катушке «B», и все три катушки прикреплены таким же образом, и Управляющая обмотка на каждой катушке управляется одним высокоэффективным быстродействующим переключающим транзистором. Нынешняя установка выглядит так:

Вы можете игнорировать показанные порталы, так как они были включены только для изучения различных способов активации транзистора.

В настоящее время катушки 6 и 7 (каждая по 22 Ом) работают как дополнительные выходные катушки, подключенные параллельно выходной катушке 3, состоящей из 3 витков каждая и с сопротивлением 4,2 Ом. Они могут быть с воздушным сердечником или с твердым железным сердечником.

При тестировании выяснилось, что вариант с воздушным сердечником работает чуть лучше, чем с железным сердечником. Каждая из этих двух катушек состоит из 4000 витков, намотанных на катушки диаметром 22 мм с использованием 0,7 мм (AWG # 21 или swg 22) суперэмалированного медного провода. Все катушки имеют одинаковые характеристики провода.

Используя эту установку катушки, прототип мог работать без остановок около 21 дня, поддерживая постоянное напряжение приводной батареи на уровне 12,7 вольт. Через 21 день система была остановлена ​​для некоторых модификаций и снова испытана с использованием совершенно новой компоновки.

В конструкции, продемонстрированной выше, ток, проходящий от аккумуляторной батареи в цепь, фактически составляет 70 миллиампер, что при 12,7 вольт дает входную мощность 0,89 Вт. Выходная мощность составляет примерно около 40 Вт, что подтверждает КПД 45.

За исключением трех дополнительных аккумуляторов на 12 В, которые дополнительно заряжаются одновременно. Результаты действительно кажутся чрезвычайно впечатляющими для предложенной схемы.

Метод привода использовался Джоном Бедини так много раз, что создатель решил поэкспериментировать с подходом Джона к оптимизации для достижения максимальной эффективности. Тем не менее, он обнаружил, что в конечном итоге полупроводник с эффектом Холла, специально выровненный с магнитом, дает наиболее эффективные результаты.

Дальнейшие исследования продолжаются, и на данный момент выходная мощность достигла 60 Вт. Это выглядит поистине потрясающе для такой крошечной системы, особенно когда вы видите, что она не включает реалистичный ввод. Для этого следующего шага мы уменьшаем батарею до одной. Настройка показана ниже:

В этой настройке на катушку «B» также подаются импульсы от транзистора, а выходной сигнал катушек вокруг ротора теперь направляется на выходной инвертор.

Здесь приводная батарея удалена и заменена маломощным 30-вольтовым трансформатором и диодом. Это, в свою очередь, управляется с выхода инвертора. Небольшое вращательное усилие ротора создает достаточный заряд на конденсаторе, чтобы система могла запускаться без какой-либо батареи. Выходная мощность для этой текущей установки может достигать 60 Вт, что является потрясающим улучшением на 50%.

3 12-вольтовые батареи также сняты, и схема может легко работать, используя только одну батарею. Непрерывная выходная мощность от одиночной батареи, которая никоим образом не требует внешней подзарядки, кажется большим достижением.

Следующим усовершенствованием является схема, включающая датчик Холла и полевой транзистор. Датчик Холла расположен точно на одной линии с магнитами. Это означает, что датчик помещается между одной из катушек и магнитом ротора. У нас есть зазор 1 мм между датчиком и ротором. На следующем изображении показано, как именно это нужно сделать:

Еще один вид сверху, когда катушка находится в правильном положении:

Эта схема демонстрировала невероятную непрерывную мощность в 150 Вт при использовании трех 12-вольтовых батарей. Первая батарея помогает питать схему, а вторая заряжается через три диода, подключенных параллельно, чтобы увеличить передачу тока для заряжаемой батареи.

Переключатель DPDT «RL1» меняет местами соединения батареи каждые пару минут с помощью показанной ниже схемы. Эта операция позволяет обеим батареям постоянно оставаться полностью заряженными.

Ток перезарядки также проходит через второй набор из трех параллельных диодов, заряжающих третью 12-вольтовую батарею. Эта 3-я батарея управляет инвертором, через который проходит предполагаемая нагрузка. Тестовая нагрузка, используемая для этой установки, представляла собой 100-ваттную лампочку и 50-ваттный вентилятор.

Датчик Холла переключает NPN-транзистор, однако практически любой быстродействующий транзистор, например BC109 или 2N2222 BJT, будет работать очень хорошо. Вы поймете, что все катушки в этот момент управляются полевым транзистором IRF840. Реле, используемое для переключения, относится к типу с фиксацией, как указано в этой конструкции:

И он питается от таймера IC555N с малым током, как показано ниже:

Синие конденсаторы выбраны для переключения конкретного фактического реле, которое используется в цепи. Они кратковременно позволяют реле включаться и выключаться каждые пять минут или около того. Резисторы номиналом 18 кОм над конденсаторами расположены так, чтобы разрядить конденсатор в течение пяти минут, когда таймер находится в выключенном состоянии.

Однако, если вы не хотите иметь это переключение между батареями, вы можете просто настроить его следующим образом:

При таком расположении батарея, питающая инвертор, подключенный к нагрузке, имеет более высокую емкость. Хотя создатель использовал пару батарей по 7 Ач, можно использовать любую обычную 12-вольтовую батарею для скутеров на 12 ампер-часов.

В основном одна из катушек используется для подачи тока на выходную батарею и одна оставшаяся катушка, которая может быть частью основной трехжильной катушки. Это принято подавать напряжение питания непосредственно на приводной аккумулятор.

Диод 1N5408 рассчитан на 100 В, 3 А. Диоды без значения могут быть любыми диодами, такими как диод 1N4148. Концы катушек, соединенные с полевым транзистором IRF840, физически установлены по окружности ротора.

Таких катушек можно найти 5 штук. Те, которые имеют серый цвет, показывают, что крайние правые три катушки состоят из отдельных жил основной 3-проводной составной катушки, уже рассмотренной в наших предыдущих схемах.

Несмотря на то, что мы видели использование трехжильной витой проволоки для переключения в стиле Бедини, встроенного как для привода, так и для вывода, в конечном итоге было сочтено ненужным включать этот тип катушки.

Следовательно, обычная спиральная катушка, состоящая из 1500 граммов эмалированной медной проволоки диаметром 0,71 мм, оказалась столь же эффективной. Дальнейшие эксперименты и исследования помогли разработать следующую схему, которая работала даже лучше, чем предыдущие версии:

В этой улучшенной конструкции используется 12-вольтовое реле без фиксации. Реле рассчитано на потребление около 100 миллиампер при 12 вольтах.

Включение резистора на 75 Ом или 100 Ом последовательно с катушкой реле помогает снизить потребление до 60 миллиампер.

Он потребляется только половину времени в периоды работы, потому что он остается нерабочим, пока его контакты находятся в Н/З положении. Как и в предыдущих версиях, эта система работает неограниченное время без каких-либо проблем.

Автор: Патрик Дж. Келли

Обратная связь от одного из преданных читателей этого блога, г-на Тамала Индики

Уважаемый сэр Swagatam,

Большое спасибо за ваш ответ, и я благодарен вам за то, что подбодрил меня. Когда вы обратились ко мне с такой просьбой, я уже установил еще 4 катушки для моего маленького двигателя Бедини, чтобы сделать его все более и более эффективным. Но я не мог создать схемы Бедини с транзисторами для этих 4 катушек, так как не мог купить оборудование.

Но мой двигатель Бедини по-прежнему работает с предыдущими 4 катушками, даже если есть небольшое сопротивление ферритовых сердечников недавно присоединенных других четырех катушек, поскольку эти катушки ничего не делают, а просто сидят вокруг моего маленького магнитного ротора. Но мой мотор все еще может заряжать аккумулятор 12 В 7 А, когда я езжу на нем с батареями 3,7.

По вашей просьбе прилагаю видео ролик моего мотора бедини и советую посмотреть его до конца т.к. в начале вольтметр показывает Заряд аккумулятора 13,6В а после запуска мотора оно поднимается до 13,7В и через каких-то 3-4 минуты поднимается до 13,8В.

Я использовал небольшие батареи на 3,7 В для питания моего маленького двигателя Бедини, и это хорошо доказывает эффективность двигателя Бедини. В моем двигателе 1 катушка является бифилярной катушкой, а другие 3 катушки запускаются тем же триггером этой бифилярной катушки, и эти три катушки увеличивают энергию двигателя, выдавая еще несколько импульсов катушки при ускорении ротора магнита. . В этом секрет моего Маленького Мотора Бедини, поскольку я соединил катушки в параллельном режиме.

Я уверен, что когда я использую другие 4 катушки с цепями бедини, мой двигатель будет работать более эффективно, а магнитный ротор будет вращаться с огромной скоростью.

Я пришлю вам еще один видеоклип, когда закончу создание цепей Бедини.

С уважением!

Thamal Indika

Результаты практических испытаний

проектирование и монтаж бестопливного электрогенератора мощностью 5 кВА в конференц-зале политехнического института — для тем и материалов проекта B.Sc, HND и OND

ПРОЕКТИРОВАНИЕ И МОНТАЖ БЕСТОПЛИВНОГО ЭЛЕКТРОГЕНЕРАТОРА МОЩНОСТЬЮ 5КВА В КОНФЕРЕНЦ-ЗАЛЕ 9 ПОЛИТЕХНИКИ0159

 

РЕФЕРАТ

Этот проект относится к теме «ПРОЕКТИРОВАНИЕ И УСТАНОВКА БЕСТОПЛИВНОГО ЭЛЕКТРОГЕНЕРАТОРА». Это устройство также известно как ИНВЕРТОРНЫЙ ГЕНЕРАТОР. Он предназначен для удовлетворения спроса на электроэнергию в офисах и домах при отсутствии энергоснабжения от национального органа электроснабжения, NEPA. Другими словами, устройство / элемент служит заменой NEPA (PHCN), который почти монополизирует электроснабжение людей, а также наш обычный генератор. Это устройство избавило от потребности в обычном генераторе, потому что оно не использует топливо для выработки электроэнергии, а также бесшумно. Он не издает шума во время работы, и в окружающем пространстве не выделяется опасный угарный газ. Это функция, которая делает его безопасным для использования в любом месте по сравнению с обычным генератором.

 

 

TABLE OF CONTENTS
TITLE PAGE
APPROVAL PAGE
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENT
CHAPTER ONE
1.0      INTRODUCTION
1.1      OBJECTIVE OF THE PROJECT
1.2      SIGNIFICANCE OF THE PROJECT
1.3      ОГРАНИЧЕНИЯ ПРОЕКТА
1.4      ОБЛАСТЬ ПРОЕКТА
1.5      ТИПЫ БЕСТОПЛИВНЫХ ГЕНЕРАТОРОВ
1.

6      ПРИМЕНЕНИЕ ПРОЕКТА
1.7 Разница между обычным генератором и генератором FUELSER

ГЛАВА 2

2.0 Обзор литературы
2.1 Обзор истории устройства
2.2 Обзор того, как выбрать устройство
2.4 Обзор генератора Fuelless Generator. 2.6      ФАКТОРЫ, НУЖНО УЧИТЫВАТЬ ПРИ УСТАНОВКЕ БЕСТОПЛИВНОГО ГЕНЕРАТОРА

ГЛАВА ТРЕТЬЯ
3.0      КОНСТРУКЦИЯ
3.1 Основные конструкции системы
3.2 Блок -схема системы
3.3 Схема схемы системы
3.4 Описание компонентов, использованных
3.5 Список деталей
3.6 Отсек для установки
3.8.2 Монтаж генератора
3.8.3 Установка держателя предохранителя
3.8.4 Отсек для установки аккумулятора
3.8.5 Монтаж аккумулятора

3.8,6 Проводка постоянного тока
3.8,7. Проводка переменного тока

Глава Четыре
Анализ результатов

4.0 Процедура строительства и тестирование
4. 1.

ГЛАВА ПЯТАЯ

5.0      ЗАКЛЮЧЕНИЕ
5.1      РЕКОМЕНДАЦИЯ
5.2      ССЫЛКИ

 

Глава
1.0 Введение
Все современные инженерные системы включают в себя определенные аспекты систем управления в какой -то момент в их смысле вещания, управление и связанная с ними теория вести себя желаемым образом.
Система в этой диссертации представляет собой преобразователь постоянного тока в переменный, который представляет собой устройство, используемое для преобразования постоянного тока в переменный ток или сигнал.
В нашей стране это оборудование используется не все не потому, что оно неважно, а потому, что люди никогда не задумываются о его конструкции и дизайне.
Подразумевается использование со свинцово-кислотным аккумулятором 12В. Например, если это автомобиль, можно получить подходящее выходное напряжение 220 В переменного тока.
Это выходное напряжение 220 В переменного тока можно использовать для питания небольших электроприборов, таких как свет, электрические вентиляторы, радио, паяльник и т. д. . Это так, потому что напряжение и мощность меньше с точки зрения продолжительности генерации переменного тока. Таким образом, этот прибор подходит для краткосрочной замены реального генератора переменного тока, особенно в отдаленных районах, и может быть установлен там, где продаются электрические приборы, и может возникнуть необходимость в его проверке и сертификации.
Успех установки бестопливного генератора зависит главным образом от методов и материалов, используемых для установки. Бестопливный генератор с низким входным напряжением постоянного тока требует высоких входных токов постоянного тока. Например, для оказания услуги в 15 Ампер при 220 Вольтах переменного тока (1800 Ватт) от батареи на 12 Вольт, постоянный ток будет приближаться к 180 Амперам! Как мы можем безопасно и эффективно подавать такой большой ток на бестопливный генератор? Эта работа проведет вас через успешную установку бестопливного генератора.
Мы начинаем с предположения, что все три основных компонента системы — инвертор, аккумулятор и генератор переменного тока — выбраны. При установке и подключении этих компонентов мы будем следовать стандартам и рекомендациям, описанным в:

  • Национальной ассоциации противопожарной защиты (NFPA)
  • .
  • Справочник национальных электротехнических норм и правил — NEC 96
  • Общество автомобильных инженеров (SAE)
  • Справочник по SAE, тома 1–4

1.2                                  ЦЕЛЬ ПРОЕКТА
конференц-зал устойчивым образом, концентрируясь на батареях / инверторных системах . Проект состоит из установок, развитие установки и рабочие протоколы. По окончании данной работы вовлеченные студенты смогут:
i. Разработать и установить схему, которая будет преобразовывать постоянный ток в переменный для различных бытовых приборов.
ii  Обеспечить бесшумный источник выработки электроэнергии.
III. Иметь источник выработки электроэнергии, не оказывающий негативного воздействия на окружающую среду (т. е. без парникового эффекта).
iv  Обеспечить источник электроэнергии с низкими затратами на техническое обслуживание и нулевой стоимостью топлива.

1.3                                       ЗНАЧИМОСТЬ ПРОЕКТА
Таким образом, данное устройство подходит для краткосрочной замены реального поколения переменного тока, особенно в отдаленных районах и для установки там, где электроприборы продаются, и может возникнуть необходимость в их проверке и сертификации.
Еще одна основная область, где это оборудование может быть очень полезным, — это системы связи, в ситуации, когда есть постоянный сбой питания переменного тока, например, в офисах, необходим бестопливный генератор, и в таких случаях его можно использовать в качестве источника света.
Бестопливный генератор не нагружайте его блок питания. Поэтому вы не видите вызванных ими колебаний электричества.
Срок службы компонентов (используемых в кондиционерах переменного тока и других электрических бытовых компонентах) увеличивается по той же причине, т. е. благодаря плавному потреблению энергии. Бестопливные генераторы намного тише обычных. Наружный блок обычно издает намного меньше шума, поскольку блок работает с пониженной скоростью.

1.4                               ОГРАНИЧЕНИЕ/ПРОБЛЕМА ПРОЕКТА
Легко повредить машину, если пользователь не знаком с работой, пользователь должен строго следовать инструкциям пользователя.
Бестопливный генератор стоит дороже. Даже без двухрежимной функции они по-прежнему имеют высокую цену.
Встроенная схема становится намного более сложной из-за многократного преобразования переменного тока (переменного тока) в постоянный ток (постоянный ток) и обратно в переменный ток (переменный ток). 3-DC, 4-D или All DC инверторы переменного тока имеют еще больше преобразований, так как больше компонентов работает на постоянном токе.
Затраты на ремонт увеличиваются, поскольку компоненты становятся более сложными и, как следствие, более дорогими. Они требуют больше усилий для сборки или ремонта.

1.5                                              ОБЛАСТЬ ПРОЕКТА
Бестопливный генератор – электронное устройство или схема, преобразующая постоянный ток (DC) в переменный ток (AC). Входное напряжение, выходное напряжение и частота, а также общая потребляемая мощность зависят от конструкции конкретного устройства или схемы. Бестопливный генератор получает ток от батареи, которая обычно составляет 12 вольт постоянного тока, поскольку батареи обычно вырабатывают энергию постоянного тока, а затем, пропустив этот ток через интегральную схему с частотой 50 Гц, он преобразует его в обычные 220 вольт переменного тока, которые обычно используются.
Объем этого проекта заключается в разработке и изготовлении инвертора с номинальной выходной мощностью 5 кВА, максимальным выходным током 22,72 А, выходным напряжением 220 В переменного тока от входа постоянного тока 12 В. Этот проект в основном предназначен для однофазных бытовых нагрузок. Проект предполагается реализовать с использованием простых и относительно дешевых комплектующих, доступных на местных рынках.

1.6                                     ТИПЫ БЕСТОПЛИВНЫХ ГЕНЕРАТОРОВ
Бестопливные генераторы можно разделить на следующие категории:
 — Автономный (также известный как автономный):
 Используется в изолированных системах, где инвертор получает энергию постоянного тока от батарей, заряжаемых солнечными батареями и/или другими источниками, такими как ветряные турбины, гидротурбины и т. д. никоим образом не взаимодействуют с коммунальной сетью и, как таковые, не обязаны иметь защиту от изолирования.
— Привязанные к сети: Эти системы согласовывают свою фазу с синусоидой, подаваемой коммунальным предприятием. Сетевой бестопливный генератор предназначен для автоматического отключения при отключении электроэнергии (так называемая защита от изолирования). Они не обеспечивают резервного питания во время отключения электроэнергии.
— Резервный аккумулятор: Это специальные бестопливные генераторы, которые предназначены для получения энергии от аккумулятора, управления зарядом аккумулятора с помощью встроенного зарядного устройства и передачи избыточной энергии в коммунальную сеть. Этот генератор способен подавать энергию переменного тока на выбранные нагрузки во время отключения электроэнергии и должен иметь защиту от изолирования.

1.7                                       ПРИМЕНЕНИЕ ПРОЕКТА
Бестопливный генератор находит разнообразное применение в повседневной жизни благодаря функции преобразования постоянного тока в переменный. Приложения следующие:
Использование источника питания постоянного тока: Бестопливный генератор, предназначенный для получения 220 В переменного тока от источника постоянного тока 12 В, установленного в автомобиле. Показанный блок обеспечивает до 1,2 ампер переменного тока, что достаточно для питания двух шестидесятиваттных лампочек.
Этот бестопливный генератор преобразует электричество постоянного тока от таких источников, как батареи или топливные элементы, в электричество переменного тока. Электричество может быть любого требуемого напряжения; в частности, он может работать с оборудованием переменного тока, предназначенным для работы от сети, или выпрямленным для производства постоянного тока с любым желаемым напряжением.
Источники бесперебойного питания: Источник бесперебойного питания (ИБП) использует батареи и инвертор для подачи переменного тока, когда основное питание недоступно. Когда основное питание восстанавливается, выпрямитель подает питание постоянного тока для перезарядки батарей.
Регулятор скорости электродвигателя: схемы бестопливного генератора, предназначенные для создания переменного диапазона выходного напряжения, часто используются в регуляторах скорости электродвигателя. Питание постоянного тока для секции инвертора может быть получено от обычной настенной розетки переменного тока или какого-либо другого источника. Схема управления и обратной связи используется для регулировки конечного выхода секции инвертора, который в конечном итоге определяет скорость двигателя, работающего под его механической нагрузкой. Потребности в управлении скоростью двигателя многочисленны и включают в себя: промышленное оборудование с приводом от двигателя, электромобили, железнодорожные транспортные системы и электроинструменты.

1.8 РАЗНИЦА МЕЖДУ ОБЫЧНЫМ ГЕНЕРАТОРОМ И БЕСТОПЛИВНЫМ ГЕНЕРАТОРОМ
Обычные генераторы существуют уже довольно давно, и их основная концепция практически не изменилась. Они состоят из источника энергии, обычно ископаемого топлива, такого как дизельное топливо, пропан или бензин, который приводит в действие двигатель, подключенный к генератору переменного тока, вырабатывающему электричество. Двигатель должен работать с постоянной скоростью (обычно 3600 об/мин), чтобы производить стандартный ток, который требуется для большинства бытовых нужд (в Нигерии обычно 220 В переменного тока при частоте 50 Гц). Если обороты двигателя колеблются, то будет меняться и частота (Гц) электрической мощности.
Бестопливные генераторы — это относительно недавняя разработка, которая стала возможной благодаря передовым электронным схемам. Инвертор питается от фиксированного источника постоянного тока (как правило, сравнительно фиксированного источника, такого как автомобильный аккумулятор или солнечная панель) и использует электронные схемы для «преобразования» мощности постоянного тока в мощность переменного тока. Преобразованный переменный ток может иметь любое требуемое напряжение и частоту с использованием соответствующего оборудования, но для потребительского уровня в Нигерии наиболее распространенной комбинацией, вероятно, является питание 12 В постоянного тока от автомобильных, лодочных или жилых автофургонов и преобразование его в источник питания. Для большинства повседневных нужд требуется питание 220 В переменного тока.
Обычные генераторы всегда больше и тяжелее бестопливных генераторов. Компактный размер, относительно легкий вес и, как следствие, мобильность бестопливного генератора делают его явным победителем в этой категории.
Обычные генераторы всегда шумные, в то время как бестопливные генераторы часто разрабатываются с нуля, чтобы быть сравнительно тихими
Обычные генераторы часто разрабатываются просто для того, чтобы получать определенное количество энергии там, где это необходимо, и поддерживать питание включенным. Такие факторы, как размер устройства, не принимали во внимание. Это означает, что обычные конструкции часто могут вмещать топливные баки больших размеров, при этом очевидным результатом является относительно длительное время работы. Это означает, что он использует топливо для своей работы.
Бестопливный генератор получает энергию от источника постоянного тока, будь то батарея или солнечная панель.
Обычные генераторы выделяют дым, который вызывает загрязнение окружающей среды, в то время как бестопливный генератор не производит дыма
Обычный генератор представляет собой не что иное, как двигатель, подключенный к генератору переменного тока и работающий со скоростью, обеспечивающей желаемую частоту переменного тока, независимо от нагрузки на него (как нагрузка увеличивается, двигатель дросселирует, чтобы поддерживать скорость двигателя на том же уровне). Выход генератора подключается напрямую к нагрузке, без какой-либо обработки.
В бестопливном генераторе выпрямитель используется для преобразования мощности переменного тока в постоянный, а конденсаторы используются для его сглаживания до определенной степени. Затем мощность постоянного тока «преобразовывается» обратно в чистую мощность переменного тока желаемой частоты и напряжения. Этот тип параллельной работы означает, что вы можете использовать два меньших и более легких генератора для обеспечения той же мощности и силы тока, что и один гораздо больший генератор, не жертвуя всеми преимуществами меньших, легких, тихих и портативных инверторных блоков. Обычные устройства просто не могут предложить эту функцию. Обратите внимание, что для подключения генераторов вам понадобится специальный кабель, которого обычно нет.

 

НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ ПОСМОТРЕТЬ ДОПОЛНИТЕЛЬНЫЕ ТЕМЫ/МАТЕРИАЛЫ


Этот материал представляет собой полный и тщательно проработанный проектный материал исключительно для академических целей, который был одобрен различными преподавателями из различных высших учебных заведений. Мы делаем реферат и первую главу видимыми для всех.

Все темы проекта на этом сайте состоят из 5 (пяти) полных глав. Каждый материал проекта включает в себя: Аннотация + Введение + и т. д. + Обзор литературы + методология + и т. д. + Заключение + Рекомендация + Ссылки/Библиография.

To » СКАЧАТЬ » полный материал по этой конкретной теме выше нажмите «ЗДЕСЬ»

Вы хотите наши банковские счета ? пожалуйста, нажмите ЗДЕСЬ

Для просмотра других связанных тем нажмите ЗДЕСЬ

Кому » SUMMIT » новая тема (ы), наш сайт разрабатывает новую тему, но вы не видели свою тему хотите подтвердить доступность вашей темы нажмите ЗДЕСЬ

Вы хотите, чтобы мы исследовали для вашей новой темы? если да, нажмите » ЗДЕСЬ »

У вас есть вопросы по поводу нашей почты/услуг? нажмите ЗДЕСЬ для ответов на ваши вопросы

Вы также можете посетить нашу страницу в Facebook по адресу fb.

Related Post