Как узнать фазу и ноль: Как определить фазу, ноль и заземление

Разное
alexxlab

Как определить фазу, ноль и заземление

Многие электроприборы требуют соблюдения полярности. Это не только мощные потребители электроэнергии, такие как посудомоечная машина или электрическая печь, но и привычные для нас переключатели для включения/выключения света. Даже подключение переключателя с размыкаемым нулем вместо фазы может стать причиной удара током.

Стабильная и безопасная работа электроприборов возможна только при правильном подключении. Для этого нужно определить, какой из проводников является фазным, нулевым и заземляющим. В этой статье мы подробно рассмотрим способы, как это сделать безопасно с использованием доступных инструментов, а также разберем, можно ли определить фазность без приборов.

Безопасность прежде всего!

Жизнь и здоровье человека являются наибольшей ценностью. Поэтому, прежде чем приступить к работе с электрооборудованием, следует убедиться, что все инструменты исправны: корпуса без повреждений, изоляция без переломов провода и повреждений, щупы не разболтаны и их корпуса не нарушены.

Не прикасайтесь к участкам без изоляции на инструментах и проводах при работе под напряжением!

При возникновении малейших сомнений в правильности действий, прекратите работу и обратитесь к профессионалу — это убережет вас, а также окружающих людей, от возможного поражения током.

Как определить ноль и фазу индикаторной отверткой

Одним из простейших способов выявления фазы и нуля является работа с отверткой-индикатором. Такой инструмент доступен по цене и несложный в использовании. Подробно рассмотрим его устройство для понимания принципа работы.

Этот прибор состоит из рукоятки и металлического жала, большая часть которого покрыта изоляцией. Внутри прозрачной рукоятки размещен резистор и неоновая лампа, а на торцевой части имеется второй контакт.

Работая с индикаторной отверткой, её жало должно касаться исследуемого элемента, а человек — второго контакта. Емкость и сопротивление человеческого тела здесь выступают частями цепи: если в цепи присутствует напряжение, то лампочка начинает светиться.

Для определения фазы и нуля отверткой-индикатором достаточно дотронуться сначала к одному, а затем к другому не изолированному концу провода или отверстию розетки. Если в исследуемом элементе есть напряжение, то лампочка загорится. Это явление соответствует фазному проводнику. Если свечения нет, то перед нами нулевой или заземляющий кабель.

Как определить фазу и ноль мультиметром

Индикаторной отверткой мы могли определить только наличие напряжения. При помощи тестера мы можем увидеть определенные показатели, отображающиеся на мониторе. Определение рабочего, заземляющего и нулевого рабочего элемента при помощи мультиметра происходит по схожему с сценариею (как с отверткой). Но это более сложный прибор, поэтому нужно быть предельно внимательным при выставлении его режимов. Если вместо режима вольтметра будет выставлен режим амперметра, вы можете получить значительный удар током.

Итак, устанавливаем переключатель устройства в режим вольтметра переменного тока «~», а предел измерения устанавливаем выше предполагаемого напряжения в сети. Перед началом работы необходимо убедиться, что мультиметр исправен. Для этого нужно измерить напряжение переменного тока в рабочей розетке и проконтролировать полученные значения. После этого можно приступать к определению фазы в исследуемом объекте. Одним из электрощупов касаемся до исследуемого элемента, а контактную часть второго электрощупа зажимаем между двух пальцев. Если на экране отображается какое-либо значение, значительно отличающееся от нуля (близкое к номинальному напряжению в сети), то перед нами рабочий проводник, если же оно равно нулю или очень низкое (до нескольких десятков вольт), то это нулевой или заземляющий проводник.

Как определить фазу и ноль без приборов

Единственный возможный способ различить проводники без использования приборов — при помощи маркировки проводников по цветам. Желто-зеленая окраска изоляции соответствует кабелю заземления, синяя или голубая — нулевому, а рабочий кабель может быть любого цвета. К сожалению, не все придерживаются ГОСТов, а также необходимых требований. Нередко случается, что электричество подключено либо немаркированными кабелями, либо маркировка не соблюдена. Поэтому доверять такому способу нельзя.

В интернете можно найти множество способов определения фазы при помощи подручных средств — картофеля, стакана с водопроводной водой, контрольной лампочки и пр. Эти способы использовать ни в коем случае нельзя — такие опыты могут закончиться фатально не только для вас, но также для окружающих!

Отдельно отметим рекомендуемую даже некоторыми электриками контрольную лампочку, т.е. патрон с лампой, к которому подсоединены два провода. Использование такого самодельного прибора запрещено Правилами Безопасной Эксплуатации Электроустановок, т.к. может причинить серьезный ущерб и нанести травмы.

Также опасно использовать способы, в которых рекомендуется соединение электросети с заземленными предметами — трубами центрального отопления, водоснабжения, газовыми трубами и пр. — если напряжение окажется на таких предметах, то прикосновение к ним может стать смертельным.

Если вы не имеете достаточно инструментов или опыта работы с электричеством, то не рискуйте жизнью и здоровьем, а доверьте подключение электроприборов профессионалу.

Как определить заземление

Часто в новых домах можно встретить проводку из трехжильного кабеля, т.е. в нем присутствует отдельно выведенное заземление. При неправильном подключении есть риск короткого замыкания, а также поражения током. Поэтому для подключения электрооборудования важно знать не только где находится фаза, но также выявить ноль и заземление.

Определить провод заземления сложно из-за того, что по своим параметрам он схож с нулевым.

В электросистемах типа ТТ, имеющих индивидуальный заземляющий контур, можно найти кабель заземления при помощи измерений мультиметром. Для этого нужно поочередно измерить напряжение между рабочим проводником и двумя другими. Большее значение соответствует нулю, меньшее — земле.

В других конфигурациях сети этот прием не работает, поэтому мы рекомендуем предпринять следующие шаги:

  1. Отключить всех потребителей электроэнергии на исследуемом участке цепи.
  2. В щитке определить, где находится сдвоенный УЗО на ввод.
  3. Внимательно осмотрев защитное устройство, определить нахождение нулевого, а также фазного проводника.
  4. Отключить это УЗО.
  5. Аккуратно отсоединить нуль от УЗО на время исследования.
  6. Включить защитное устройство.
  7. Тестером произвести измерения исследуемых элементов поочередно подключая каждый к фазному. Нулевой проводник отключен, поэтому показания измерений будут нулевыми, сочетание фаза-земля покажет около 220 В.
  8. Промаркировать проводники по установленным данным.
  9. Произвести повторное подключение нуля к УЗО.

Помните: неосторожное или неумелое обращение с электричеством может привести к непоправимым последствиям. Не рискуйте жизнью и здоровьем — доверьте дело профессиональным электрикам со стажем и необходимыми допусками.

Оцените новость:

Поделиться:

Как определить фазу и ноль мультиметром: инструкции, фото, видео

Чтобы правильно подключить приборы освещения, розетки и другие электроустройства нужно знать, где фаза и ноль. Для этого можно воспользоваться очень полезным и функциональным измерителем — мультиметром. Несмотря на кажущуюся простоту этого прибора, нужно научиться им пользоваться, в некоторых случаях одно неверное действие может привести к неприятным и даже плачевным результатам. Мы расскажем вам, как определить фазу и ноль мультиметром, и вы сможете безопасно организовать электричество в своём доме.

Contents

  • 1 Для неискушённых пользователей: что такое фаза и ноль
  • 2 Самое важное: правила безопасности
  • 3 Как определить фазу мультиметром
  • 4 Как найти ноль мультиметром
    • 4.1 Вопрос — ответ

Для неискушённых пользователей: что такое фаза и ноль

Чтобы понять, как определить фазу и ноль мультиметром, нужно сначала узнать, что такое «фаза и ноль». Здесь нам пригодится элементарная физика. Вспомним определение электротока, знакомое многим из нас со школы, — это упорядоченное движение заряженных частиц, то есть электронов. Все электросети сгруппированы так:

  1. С постоянным током, когда частицы движутся в едином направлении.
  2. С переменным, когда направление носит переменчивый характер.

Нам нужен второй вид. Переменная сеть включает в себя две части:

  1. Фаза (официальное название — рабочая фаза), по которой идёт рабочее напряжение.
  2. Ноль или пустая фаза, необходимая для образования замкнутой сети, чтобы подключались и работали электроприборы. Кроме того, она используется для сетевого заземления.

Когда электроприборы включаются в однофазку, расположение этих двух фаз не имеет значения. Но для монтажа электропроводки и её присоединения к общедомовой сети без этих знаний не обойтись.

О том, как проверить мультиметром фазу и ноль, мы и поговорим далее, но сначала вспомним простейшие меры безопасности.

Самое важное: правила безопасности

  1. Не используйте нерабочие щупы.
  2. Не используйте измеритель там, где царит высокая влажность.
  3. При выборе диапазона измерений переключатель важно сразу ставить к наибольшему значению во избежание поломки мультиметра.
  4. Не изменяйте измерительные границы или режим тестера прямо в ходе замеров. Проще говоря, не вертите переключатель мультиметра, когда делаете измерение.
  5. Перед эксплуатацией мультиметра прочитайте руководство по его применению. Есть разные модели и обозначения. Чтобы правильно расставить щупы, выбрать точный режим и диапазон значений, изучите руководство к своей модели тестера. Полезно прочитать и наш материал о том, как пользоваться мультиметром.

Как определить фазу мультиметром

Для начала включите тестер и выберете функцию тестирования напряжения переменного тока. Чаще всего она отмечена знаком V~. Сразу ставим максимальный предел измерения, например, 750В. Не забудьте правильно установить щупы в гнезда. Обычно черный подключается к отверстию с надписью COM, а красный к VΩmA.

Кстати, если вы хотите убедиться в работоспособности определённого тестера (а это очень важно!), проверьте свою розетку. Сделать это очень просто: вставить щупы в розеточные гнёзда. О полярности не беспокойтесь, здесь она значения не имеет. Главное правило — не касайтесь руками частей щупов, которые проводят ток. Если с вашим тестером всё в порядке, нет затруднений с электроснабжением и подключением розетки, на дисплее вы увидите значение около 220-230В.

Теперь можно продолжить рассказывать о том, как найти мультиметром фазу в розетке 220В.

Проще всего обстоят дела, если перед нами три проводка: земля, ноль и фаза. Всё, что нужно сделать в такой ситуации — проверить напряжение всех пар. Между землей и нулём напряжения почти нет, значит, другой проводок — фаза.

Если же перед вами два проводка, всё немного иначе. Теперь нам нужно организовать подходящие условия для движения электричества по прибору. Итак, дальнейшие действия для проверки фазы мультиметром:

  1. Наконечником алого провода тестера дотрагиваемся до исследуемого проводка.
  2. Наконечник темного провода мультиметра прижимаем пальцами или касаемся им заземленного предмета (второй вариант предпочтительнее!). Им может быть стальной каркас рядом стоящей стены, отопительная батарея и т.п. Главное — выбрать заземленный предмет.
  3. Смотрим на показания мультиметра. Если вы видите показания, приближенные к 220В, значит, вы нашли фазу. Цифра может чуть отличаться в зависимости от условий, но будет находиться в пределах указанного значения. Если проверяемый вами кабель не является фазой, значит, вы увидите на дисплее 0 или немного вольт.

Есть ли риск в этом методе? Да, но он очень маленький. Дело в том, что сетевое напряжение движется через значительное сопротивление резистора, который встроен в наш измерительный прибор. Поэтому удара током нет. А рабочий этот резистор или нет, мы предварительно проверяем с помощью розетки способом, который описали выше. Без рабочего резистора, конечно, складываются отличные предпосылки для короткого замыкания, а его не заметить невозможно.

И лучше всего не зажимать наконечник пальцами, а использовать для этого заземлённые устройства. Но это возможно не всегда. Если вы будете использовать свою руку, советуем не пренебрегать такими принципами безопасности, как резиновый коврик под ногами или диэлектрические ботинки. Кроме того, прикоснитесь к щупу правой рукой сначала быстро: если нет никаких неприятных ощущений, то выполняйте измерения.

Рекомендуем посмотреть видео о том, как узнать мультиметром фазу и ноль:

Конечно, не забудьте перед описанными манипуляциями выбрать режим измерения именно напряжения переменного тока.

Если же вы не уверены, что всё пройдет благополучно, не беритесь за это дело, а доверьте опытным электрикам. Кроме того, можно использовать вместо мультиметра индикаторную отвертку (её индикатор загорается/не загорается при проверке).

А вот ещё одно интересное видео в тему, как мультиметром узнать, где фаза:

Как найти ноль мультиметром

Логично предположить, что ноль располагается по отношению к фазе, поэтому искать его легко: если вы нашли фазу, второй проводок из пары — ноль. Но не всё так просто, потому что другой провод может также быть землей. Ноль и заземление почти одинаковы. Иногда эти два провода связываются в щите и выявить их весьма нелегко. Как определить ноль мультиметром?

Советуется выключить кабель ввода от заземлительной шины в щитке. В таком варианте, когда будет проверяться напряжение между землёй и фазой, 220В не будет, как при тестировании ноля и фазы. Если в щитке имеется дифференциальная защитная система, она проявит себя, когда будут проверяться заземлительные проводки относительно иного проводника, даже если он нулевой.

Как проверить ноль мультиметром в розетке:

  1. Красный провод мультиметра подвести к дырке, где фаза.
  2. Черный провод соединить сначала с одним контактом, потом с другим.
  3. Зафиксировать оба напряжения. Где оно меньше — там земля, где чуть больше — ноль.

Теперь вы знаете, как определить фазу и ноль мультиметром. Делитесь в комментариях своим опытом.

Желаем безопасных и точных измерений!

Вопрос — ответ

Вопрос: Как определить фазу цифровым мультиметром?

Имя: Кирилл

Ответ: Включите тестер и выберете функцию тестирования напряжения переменного тока. Чаще всего она отмечена знаком V~. Поставьте максимальный предел измерения, например, 750В. Не забудьте правильно установить щупы в гнезда. Обычно черный подключается к отверстию с надписью COM, а красный к VΩmA.

 

Вопрос: Как безопасно найти фазу мультиметром?

Имя: Матвей

Ответ: Для этого нужно убедиться в работоспособности мультиметра с помощью проверки розетки. Вставьте щупы в розеточные гнёзда, не касайтесь руками частей щупов, которые проводят ток. Если с вашим тестером всё в порядке, нет затруднений с электроснабжением и подключением розетки, на дисплее вы увидите значение около 220-230В.

 

Вопрос: Как правильно проверить фазу и ноль мультиметром?

Имя: Кирилл

Ответ: Сначала можно найти фазу. Как это сделать, зависит от количества проводов: два или три. В первом случае наконечником алого провода тестера дотрагиваемся до исследуемого проводка. Наконечник темного провода мультиметра прижимаем пальцами или касаемся им заземленного предмета (второй вариант предпочтительнее!). После определения фазы можно найти ноль и заземление.

 

Вопрос: Как можно найти фазу в розетке 220В мультиметром?

Имя: Камиль

Ответ: Проще всего это сделать, если три проводка: земля, ноль и фаза. Нужно только проверить напряжение всех пар. Между землей и нолём напряжения почти нет, значит, другой проводок — фаза. Если провода два, нужно организовать подходящие условия для движения электричества по прибору.

 

Вопрос: Как лучше всего найти ноль мультиметром?

Имя: Егор

Ответ: Нужно выключить кабель ввода от заземлительной шины в электрощитке. Когда будет проверяться напряжение между землёй и фазой, 220В не будет, как при проверке ноля и фазы. Если в щитке имеется дифференциальная защитная система, она проявит себя, когда будут проверяться заземлительные проводки относительно иного проводника, даже если он нулевой.

 

Как определить фазу, ноль и землю: инструкция с видео

Необходимость решения этой проблемы может возникнуть при установке розетки, когда к ней подходят немаркированные проводники. В этом случае перед установкой розетки необходимо определить, какой из проводов за что отвечает. Рассмотрим, как определить фазу, ноль и массу индикаторной отверткой, мультиметром, а также подручными средствами.

  • Использование индикаторной отвертки
  • Двухпроводная сеть
  • Трехпроводная сеть
  • Определение мультиметром или тестером
  • Что еще важно знать?

С помощью индикаторной отвертки

Последовательность действий зависит от того, какая система электропроводки установлена ​​в помещении. Рассмотрим правила определения фазного и нулевого провода в разных случаях.

Двухпроводная сеть

Такой вариант проводки встречается в старых домах. По современной терминологии эта система имеет обозначение TN-C. Суть его заключается в том, что нулевой рабочий провод, заземляемый на подстанции, совмещает роль защитного заземления (PEN). В системе ИТ также имеется только фазный и рабочий нулевой провод, но в обычных жилых и производственных помещениях он не используется. В двухпроводной сети отдельный заземляющий провод просто отсутствует, то есть есть только фаза и ноль. Определить их очень просто: прикасаемся индикатором последовательно к каждому из токонесущих проводников, фаза зажигает контрольную лампу, как показано на фото ниже:

Система устарела. На вилке любого современного электроприбора есть три клеммы. Электропроводка должна быть трехпроводной, за исключением группы освещения.

Трехпроводная сеть

В данном варианте в дом или квартиру заходит три провода. Такие сети имеют несколько разновидностей. В системе TN-S рабочий ноль и защитное заземление идут отдельно от подстанции, где оба соединены с рабочим заземлением. При таком типе проводки определение назначения проводов можно сделать следующим образом:

  • в щитке или в распределительной коробке по индикатору определить провод, на котором присутствует фаза;
  • два оставшихся — рабочий и защитный ноль (земля), отсоединяем от них по одному проводу на щитке;
  • если отключить рабочий ноль, все электрооборудование в квартире перестанет работать, а значит оставшаяся жила — земля, или защитное заземление.

Теперь осталось определить в розетке среди трех проводов, на каком из них фаза, ноль и земля. Если нет возможности подобрать цвет изоляции, определение их функций можно выполнить подручными средствами, без приборов. Для этого нужно взять патрон с вкрученной лампой и выведенными наружу проводами. Определение осуществляется следующим образом. Одной жилой из патрона касаемся фазного провода (фаза уже найдена с помощью индикатора), а второй касается двух оставшихся. Если на панели отключен рабочий ноль, то лампа будет гореть только при подключении к защитному заземлению, и наоборот.

На видео ниже наглядно показано, как определить фазу, ноль и землю с помощью индикаторной отвертки:

Еще одна вариация системы TN — разводка TN-C-S. В этом случае нулевой провод разделяется на рабочий ноль и защитное заземление на вводе в дом. Здесь для определения назначения проводников можно применить последовательность операций, описанную для системы TN-S. Добавлена ​​дополнительная возможность, осмотрев место отрыва PEN, определить, где по сечению жилы в проводе рабочий и защитный ноль (земля).

В случае, если заземление выполнено по системе ТТ, объект (частный дом) имеет собственное заземляющее устройство, от которого осуществляется разводка защитного заземления. В этих условиях, как правило, можно определить фазу, ноль и землю, наблюдая за заземлителем на пути его прокладки.

Определение мультиметром или тестером

Для начала лучше всего определить фазу с помощью отвертки, совмещенной с индикатором. Будем исходить из того, что при наличии в хозяйстве мультиметра индикатор обязательно найдется. В крайнем случае можно сделать следующее. В некоторых случаях может помочь использование мультиметра для определения напряжения между проводом и трубой отопления или водопровода. К сожалению, результат здесь не всегда предсказуем. Чаще всего напряжение между фазой и системой отопления близко к 220 В, в любом случае оно должно быть выше, чем между тем же отоплением и нулем. Картина может измениться, например, если в качестве рабочей площадки вороватый сосед использует трубы отопления.

В трехпроводных цепях мультиметр покажет рабочее напряжение между проводником, к которому приложена фаза, и любым из двух других. Определение того, какой ноль рабочий, а какой заземленный, можно провести по описанной выше методике, то есть путем отключения одного из приходящих нулей на щитке и использования контрольной лампы.

Что еще важно знать?

Иногда определение назначения токонесущих жил может облегчить знание их общепринятой цветовой маркировки:

  • Ноль может быть обозначен латинской буквой N. Общепринятый цвет изоляции синий или голубой. Еще один вариант окраски утеплителя – белая полоса на голубом фоне.
  • Земельный участок отмечен латиницей PE. В системе заземления, совмещающей функции защитного и рабочего нуля, обозначают PEN. Цвет используемого утеплителя желтый, имеющий одну или две полосы ярко-зеленого оттенка.
  • Фаза может обозначаться латинской буквой L или маркироваться как фаза трехфазной электрической сети, то есть А, В или С. Цвет изоляции может быть произвольным, но не повторяющим тех, которые обозначают землю (защитный заземление) или нулевой провод. В большинстве случаев это красный, коричневый или черный цвет.

Полезно знать правила проводки. Это также может помочь определить, где находятся фаза, ноль и земля. Фаза всегда должна приходить на распределительный щит через автоматический выключатель или предохранитель. Нулевая жила может быть смонтирована на шине специальной конструкции, имеющей несколько выводов. В металлических панелях и клеммных коробках старого типа ноль или земля монтировались под гайку болтом, приваренным к корпусу коробки. Эти правила могут облегчить определение функций входящих проводников. Подробнее о том, как определить фазу и ноль без приборов, вы можете из нашей отдельной статьи.

Теперь вы знаете, как определить фазу, ноль и массу мультиметром или индикаторной отверткой. Надеемся, что предоставленные рекомендации помогли Вам решить проблему самостоятельно!

Наверняка вы не знаете:

  • Методы определения потребляемой мощности электроприборов
  • Что такое чередование фаз
  • Как определить сечение кабеля по диаметру жилы

Опубликовано: Обновлено:

03. 07.2017 Пока без коментариев

Простое объяснение мощности и фазы

Опубликовано

Есть два разных взгляда на фазы. Во-первых, это когда напряжения не совпадают по фазе друг с другом, например, при трехфазном питании, а во-вторых, когда напряжение не совпадает по фазе с током.

Если вы подключаете два источника, они должны быть синхронизированы, чтобы быть эффективным источником питания.

Если у вас есть два разных электрических генератора, даже если они работают на одной частоте, например, 60 герц, если вы соедините их вместе, вам нужно убедиться, что они находятся в фазе. Проще говоря, это просто означает, что напряжения должны расти и падать вместе. Если они не синхронизированы, они будут сражаться друг против друга.

3-фазные сигналы мощности

Иногда, если вы все делаете правильно, вы хотите, чтобы ваши напряжения были не синхронизированы. В промышленных условиях, особенно с двигателями, вы можете получить так называемую «трехфазную» мощность. Здесь у вас есть три провода с напряжением, отстоящим друг от друга на 120 градусов. Пик второй синусоиды возникает на 120 градусов позже первой, а вершина третьей синусоиды возникает еще на 120 градусов позже. Четвертый провод обычно обеспечивает ссылку на землю, что делает его более эффективным, чем типичный однофазный или «монофазный» источник питания, где у вас есть только один провод с переменным напряжением и провод заземления.

Однофазная кривая мощности

Помимо эффективности, трехфазная мощность лучше, чем однофазная, поскольку выходная мощность постоянна. Только с одной фазой у вас может быть хорошая средняя мощность, но она постоянно меняется, и у вас есть моменты, много раз в секунду, когда выходная мощность равна нулю. Если у вас есть трехфазное питание для двигателей, двигатели могут быть меньше и более эффективными, и их крутящий момент не пульсирует из-за постоянной потребляемой мощности. Эти три фазы также позволяют двигателям не требовать отдельных пусковых цепей и придают им больший крутящий момент при запуске. Наконец, получить однофазное питание из трехфазного предельно просто — два других ввода просто не подключаешь.

Ток опережает, когда нагрузка емкостная.

Другой тип фазы, о котором вам нужно подумать, это если напряжение и ток совпадают по фазе. При чисто резистивной нагрузке при увеличении напряжения одновременно увеличивается ток. Но по причинам, которые мы объясним в следующем видео, индуктивная или емкостная нагрузка может привести к тому, что ваш ток *опередит* или *отстанет* от напряжения. Таким образом, если у вас есть индуктивная нагрузка, такая как двигатель в вашем блендере или пылесосе, или даже емкостная нагрузка, которая менее распространена в жилых условиях, ток и напряжение не будут синхронизированы.

Ток отстает при индуктивной нагрузке.

Если вы помните, мощность равна напряжению, умноженному на ток, поэтому каждый раз, когда либо напряжение, либо ток равны 0, выходная мощность отсутствует. Вы можете визуально увидеть, что чем больше рассинхронизация напряжения и тока, тем меньше энергии вы на самом деле получаете. По иронии или досаде, для создания этой силы по-прежнему требуется столько же труда, даже если вы не можете использовать ее полностью. Когда это не совпадает по фазе, это называется реактивной мощностью и измеряется в реактивных вольт-амперах или варах. Инженеры любят использовать воображаемые числа и фазовые углы, чтобы описать это, и хотя это может показаться пугающим, это всего лишь математические способы описания этой разницы в фазе. На самом деле это не так уж и плохо, если вы понимаете принцип происходящего.

Вкратце:

  • Синхронизация напряжений от разных источников
  • Преимущества трехфазного питания
  • Как напряжение/ток выходит из фазы
  • Потеря мощности при несоответствии фазы напряжения/тока
Автор:
Джош Бишоп

Интересуясь встраиваемыми системами, туризмом, кулинарией и чтением, Джош получил степень бакалавра электротехники в Университете штата Бойсе.

Related Post