Как сделать электричество: Как получить бесплатное электричество (мы нашли четыре способа)

Разное
alexxlab

Содержание

Строим дом: как провести электричество?

Если вы приобрели участок земли и собираетесь строить дом или пока еще только присматриваете недвижимость для будущего строительства, то, вполне вероятно, вам предстоит решить важную задачу – провести электричество.

Если на вашем объекте нужно новое подключение электричества, вы должны обратиться к оператору системы распределения АО «Sadales tīkls», обеспечивающему проведение электрического подключения и поставку электроэнергии. После проведения к объекту электричества у вас будет возможность обратиться к одному из поставщиков электричества, чтобы выбрать наиболее подходящее и выгодное предложение электричества. В свою очередь, если на принадлежащем вам объекте уже есть подключение электричества и вам необходимо только возобновить подачу электроэнергии, вы должны обратиться к выбранному поставщику электричества и написать заявление на поставку электроэнергии.

Как происходит проведение нового подключения? Сколько времени занимает проведение электричества и сколько оно стоит? В этом материале вы найдете ответы на эти и другие вопросы, которые помогут вам легко и быстро осуществить идею о подключении электричества на вашем объекте.

Как подключить недвижимость к электросетям и возобновить подачу электроэнергии?

Если на вашем объекте нужно новое подключение электричества, заполните электронное заявление на клиентском портале АО «Sadales tīkls» e-st.lv. В нем нужно будет указать ваши контактные данные, а также информацию об объекте, где нужно подключение, и технические параметры. Если же на объекте было проведено электричество и вам нужно только возобновить подачу электроэнергии, свяжитесь с выбранным поставщиком электроэнергии и заключите с ним договор на поставку электричества

Какая мощность подключения мне нужна?

Определить необходимую мощность подключения, чтобы не переплачивать за неэффективно использованную нагрузку, вам поможет онлайн-калькулятор нагрузки, который доступен на сайте sadalestikls.lv.

Должен ли я буду привлечь других специалистов и кто будет проводить технические работы по проведению электричества?

Да, вы должны будете выбрать сертифицированного электрика, который проложит внутренние электросети. В некоторых случаях вам могут понадобиться также услуги проектировщика электросетей. Строительные работы до распределительного устройства будут проводить выбранная АО «Sadales tīkls» на конкурсной основе строительная организация, а за проведение кабеля от щита до объекта, а также за прокладку электросетей внутри здания будет ответственен выбранный вами сертифицированный электрик. В свою очередь специалисты АО «Sadales tīkls» подключат ваш объект к общим электросетям, а также установят распределительное устройство и счетчики.

Сколько времени этой занимает и как я буду знать, какие работы уже завершены и что еще необходимо сделать?

Работы по устройству нового подключения или увеличению мощности могут занять от нескольких дней до нескольких месяцев в зависимости от сложности проекта. Удобно следить за ходом работ можно на клиентском портале e-st.lv. В свою очередь, зарегистрировав на сайте свой номер мобильного телефона, вы будете получать всю актуальную информацию в виде коротких сообщений.

Как рассчитывается стоимость работ?

Стоимость работ по устройству нового подключения или увеличению мощности зависит от запрашиваемой мощности и объема производимых работ. Услуга включает в себя такие работы, как замена или установка распределительного устройства, прокладка кабеля или провода до распределительного устройства и другие работы по обеспечению подключения к общим электросетям. Если вы приобрели участок земли или здание без подключения к электричеству или еще только планируете это сделать, подайте заявку на новое подключение электричества на клиентском портале e-st.lv и получите расчет стоимости услуги бесплатно.

Могу ли я вернуть вложенные средства?

Чтобы способствовать развитию благоприятной для бизнеса среды, клиенты, чье подключение или увеличение мощности составляет 0,4 кВ (киловольта) в электросети с мощностью выше 100А или в электросети среднего напряжения, могут в течение пяти лет с момента устройства нового подключения или увеличения мощности вернуть до 100% средств, уплаченных за услугу.

«Sadales tīkls» призывает тщательно рассчитать необходимую мощность, чтобы вернуть инвестиции и в дальнейшем пользоваться электроэнергией, не переплачивая.

Как отказаться от ненужной мощности?

Для эффективного использования нагрузки и снижения общих расходов на электроэнергию необходимо рассчитать величину необходимой мощности. Это удобно можно сделать с помощью онлайн-калькулятора нагрузки, который доступен на сайте sadalestikls.lv.

Как уменьшить нагрузку?

Подайте заявку на уменьшение нагрузки на клиентском портале e-st.lv и получите услугу бесплатно.  Рекомендуем тщательно оценить необходимость этого шага, так как увеличение нагрузки является платной услугой. Для вашего удобства на сайте sadalestikls.lv доступен онлайн-калькулятор нагрузки, который поможет вам самостоятельно рассчитать необходимую мощность. 

Что делать, если электричество нужно кратковременно?

Если вы хотите провести мероприятия по открытым небом, обустроить летнее кафе или планируете строительные работы на объекте, которое не подключено к электричеству, и подключение вам нужно на срок, не превышающий 24 месяцев, на клиентском портале e-st. lv можно подать заявку на временное подключение.

Что делать, если не допустимы перерывы в электроснабжении?

Если у вас установлено оборудование, для которого перерывы в электроснабжении недопустимы, вы можете заказать установку автономного электроснабжения.

Как получить электричество из раскалённого металла?

Можно ли запасать энергию, разогрев вещество до очень высокой температуры – порядка 2000°C? Каковы были бы преимущества такой технологии? И какие проблемы стоят на пути её разработки? Ответы на эти жгучие вопросы пытаются найти учёные из этой металлургической лаборатории в Норвегии.

Необходима тщательная подготовка при работе с жидким сплавом, нагретым до 1700°C. Учёные, занятые в этом европейском исследовательском проекте, стремятся выяснить, можно ли получать электричество из тепловой энергии, когда металл раскалён до столь высоких температур. В данном опыте используется железо с добавками кремния и бора.

Учёный-материаловед Мерет Тангстад из Норвежского научно-технического университета поясняет:

– Мы начали с тех материалов, у которых наибольшая разница в энергии в жидком и твёрдом состоянии. Это, пожалуй, главный эффект, который мы изучаем. Он важен, потому что позволит нам запасать очень большую энергию в очень маленьких объёмах.

При таких температурах процесс теплопередачи смещается от проводимости или конвекции к излучению. Но процедура должна быть предельно эффективной, надёжной, стабильной и безопасной, чтобы исключить несчастные случаи, технические сбои и потери энергии. Поэтому необходимо вести мониторинг в реальном времени.

– При высоких температурах всё реагирует со всем, – говорит Наталия Собчак из Польского исследовательского литейного института. – И каждая из этих реакций может вызвать огромные изменения свойств контейнера, он даже может треснуть. В идеале мы ищем условия, которые гарантировали бы контролируемые химические реакции в процессе плавления.

Здесь, в Мадриде, ведутся дополнительные исследования по разработке первых готовых к использованию систем. Учёные рассчитывают, что их работа вскоре позволит создать недорогую тепловую электростанцию, где энергия, полученная из устойчивых источников, будет храниться в системах скрытого накопления тепловой энергии, которые смогут снабжать электроэнергией потребителей.

– Мы можем запасать от одного до двух киловатт-часов на литр, – поясняет Алехандро Датас из института Солнечной энергии. – Это примерно в 10 раз больше, чем позволяет обычная электрохимическая батарея. Вся энергия, которая производится в процессе плавления – это нерастраченная энергия. Она сохраняется в тепловой форме.

Для достижения такого результата, исследователи хотят добиться наибольшей степени преобразования накопленного тепла в электричество. А для этого требуется обратить особое внимание на электроны.

– Когда некий материал достигает определённой высокой температуры, он выделяет электроны, – говорит Даниэль Мариа Трукчи, электроинженер из CNR-ISM. – Наша задача – обеспечить эффективное высвобождение этих электронов при не слишком высокой температуре. Тогда мы сможем добиться максимального преобразования тепловой энергии в электричество. Электроны становятся транспортёрами электричества.

Уже готов первый прототип, который должен продемонстрировать осуществимость всей концепции. В нём используется мало материалов, что упрощает сборку и сокращает затраты на дальнейшее обслуживание. Если испытания пройдут успешно, учёные намерены представить свою разработку на рынке.

– Преимущество небольших систем, которые мы разрабатываем, состоит в том, что за счёт объёма продаж мы сможем увеличить производство и значительно повысить нашу производительность, – поясняет Алехандро Датас. – В краткосрочной перспективе, лет примерно через пять, мы рассчитываем выйти с этой новой технологией на рынок.

Технологическое присоединение — Россети Урал

С 01.07.2020 оформление договора ТП не осуществляется в отношении следующих категорий заявителей:

  • Физических лиц, с мощностью энергопринимающих устройств до 15 кВт по 3 категории надежности;
  • Юридических лиц/индивидуальных предпринимателей с мощностью энергопринимающих устройств до 150кВт по 2, 3 категории надежности.

В течение 10 рабочих дней после получения заявки на ТП, в Личном кабинете вышеуказанных категорий заявителей, размещается счет на оплату услуги ТП, технические условия и инструкция по порядку фактического присоединения к эл. сетям действиями заявителя (при ТП на уровне напряжения 0,22 кВ, 0,4 кВ). В Личном кабинете также размещаются платежные реквизиты гарантирующего поставщика, информации о номере лицевого счета заявителя/договор, обеспечивающий продажу электрической энергии (мощности) на розничном рынке, подписанный квалифицированной электронной подписью гарантирующего поставщика.

В течение 5 рабочих дней с даты размещения счета в Личном кабинете он должен быть оплачен заявителем, в противном случае заявка на ТП аннулируется.

После оплаты заявителем счета, договор на ТП считается заключенным на условиях типовой формы договора, размещенной на официальном сайте ОАО «МРСК Урала» — и сетевая организация приступает к выполнению мероприятий.

Для иных категорий заявителей договор на ТП заключается путем подписания в бумажном, либо в электронном виде с использованием квалифицированной электронной подписи.

Не позднее 15 дней с момента получения заявки на ТП в адрес иных категорий заявителей направляется проект договора ТП договора (в 2-х экземплярах) и технические условия, подписанные со стороны сетевой организации.

В течение 10 рабочих дней с даты получения от сетевой организации проекта договора ТП заявителю необходимо подписать оба экземпляра и направить один экземпляр в адрес сетевой организации с приложением к нему документов, подтверждающих полномочия лица, подписавшего такой договор.

В случае неполучения сетевой организаций подписанного проекта договора, либо мотивированного отказа от его подписания, но не ранее чем через 30 рабочих дней со дня получения заявителем проекта договора, поданная заявка аннулируется.

Договором ТП (счетом на оплату ТП) определяются следующие условия (п. 16 Правил ТП):

1. Срок осуществления мероприятий по технологическому присоединению, который исчисляется со дня заключения договора и не может превышать:

В случае, если ТП осуществляется к электрическим сетям уровнем напряжения до 20 кВ включительно при этом расстояние от существующих электрических сетей необходимого класса напряжения до границ участка, на котором расположены присоединяемые энергопринимающие устройства заявителя, составляет не более 300 метров в городах и поселках городского типа и не более 500 метров в сельской местности:

  • 4 месяца, если сетевой организации не требуется проведение работ по строительству, либо реконструкции объектов электросетевого хозяйства и максимальная мощность присоединяемых объектов не превышает 670 кВт
  • 6 месяцев, если сетевой организации требуется выполнение работ по строительству, либо реконструкции объектов электросетевого хозяйства и максимальная мощность присоединяемых объектов не превышает 150 кВт для юридических лиц и 15 кВт — для физических лиц
  • от 1 до 4 лет, в остальных случаях в соответствии с Правилами ТП

2. Размер платы за ТП. Определяется в соответствии с утвержденными органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов ставками платы за технологическое присоединение https://www.mrsk-ural.ru/client/tp/tariff/. 

  • Для заявителей с мощность устройств до 15 кВт размер платы за ТП составляет 550 р. (для ФЛ при условии использования платы 1 раз в 3 года и при расстоянии до ближайших сетей сетевой организации не далее 300/500 метров в городской/сельской местности соответственно).
  • Для заявителей с мощность устройств до 150 кВт в размер платы не включаются мероприятия по строительству электросетевых объектов. В составе платы учитывается ставка С1 (плата «за бумагу») и С8 (плата за прибор учета).
  • Для заявителей с мощность устройств до 670 кВт размер платы за ТП устанавливается в соответствии стандартизированными ставками либо ставками за единицу максимальной мощности.
  • Для заявителей с мощностью устройств 670 кВт и выше размер платы за ТП устанавливается в соответствии стандартизированными ставками
  • Для заявителей, осуществляющих ТП по индивидуальному проекту, размер платы устанавливается органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов отдельно

3.

Ответственность сторон за несоблюдение установленных сроков исполнения своих обязательств

4. Порядок разграничения балансовой принадлежности электрических сетей и эксплуатационной ответственности сторон

5. Перечень мероприятий по ТП и обязательства сторон по их выполнению определяются техническими условиями с учетом следующего:

  • Точка присоединения, должна располагаться не далее 15 метров во внешнюю сторону от границы участка заявителя, на котором располагаются (будут располагаться) присоединяемые объекты заявителя
  • В обязательства сетевой организации с 01.07.2020 входит установка приборов учета электрической энергии (за исключением МКД)
  • Для категорий заявителей: физических лиц, с мощностью устройств до 15 кВт по 3 категории надежности; юридических лиц/индивидуальных предпринимателей с мощностью устройств до 150кВт по 2, 3 категории надежности, если ТП осуществляется на уровне напряжения 0,4 кВ и ниже сетевая организация обеспечивает возможность осуществить действиями заявителя фактическое присоединение его объектов к электрическим сетям и фактический прием (подачу) напряжения и мощности в соответствии с инструкцией.

Чем помогут городу светящиеся растения и дороги, «дающие» электричество

Современный городской житель даже не задумывается о том, насколько сильно освещены города по ночам. Иногда даже хочется, чтобы света в мегаполисах было еще больше, но стоит немного задуматься – и выяснится, что больше просто некуда.

На каждой улице стоят фонари. Причем чаще всего – двумя комплектами: одни освещают проезжую часть, другие – тротуары. Остановки общественного транспорта и рекламные конструкции излучают призывный свет. Многие здания, особенно исторические, оборудованы подсветкой. У каждого автомобиля есть фары, поворотники и стоп-сигналы, каждый светофор посылает световые сигналы, в каждом подземном переходе висят десятки ламп.

Везде светло даже самой темной ночью. Сияют улицы, торговые центры, заправки, киоски, квартиры, транспорт, вывески, дорожные знаки… За одну длинную зимнюю ночь в одной только Москве на освещение уходит 1,5 млн кВт ч электроэнергии.

Но если количество источников света увеличить уже практически нельзя, то их яркость растет постоянно. Все дело в прогрессе. Когда-то внутри уличных фонарей тускло горели масляные светильники, потом их заменили на более яркие газовые, затем настала эра ламп накаливания, а после появились газоразрядные дуговые лампы – в основном ртутные или натриевые. Именно они дают тот самый желтовато-оранжевый свет, хорошо знакомый жителям городов. Но в последние десятилетия им на смену пришли светодиоды – яркие, экономичные источники света с огромным сроком службы. Именно поэтому городские улицы в последние годы стали светлее, а количество энергии, потраченной на освещение, при этом не увеличилось. Кстати, если посмотреть из космоса на ночной Берлин – город, поделенный во время холодной войны на западную и восточную части, – можно увидеть, что его районы освещены по-разному. Восточная часть до сих пор светится желтым, а западная, в которой переход на светодиоды начался намного раньше, – белым.

Ученые постоянно ищут новые технологии, которые помогли бы снизить энергозатраты на городское освещение. Например, британец Питер Хьюз предложил получать электричество от проезжающих по дороге автомобилей. По его проекту на дорожном полотне нужно расположить специальные рампы, напоминающие «лежачих полицейских». Машины, наезжающие на эти искусственные неровности, своим весом приводят в движение генераторы, вырабатывая за один раз от 5 до 50 кВт энергии. Все это электричество идет на питание светофоров, дорожных знаков и уличных фонарей. Пешеходы тоже могут вносить свою лепту: британский инженер Лоуренс Кембелл-Кук предложил выложить тротуары генераторной плиткой, а полученную «натоптанную» энергию пустить на освещение.

Встречаются и совсем необычные проекты. Исследователи из Массачусетского технологического института активно работают над созданием светящихся растений. Ученые насыщают растительные клетки наночастицами люминофора, и те после непродолжительной «световой зарядки» способны несколько минут излучать довольно яркий свет. К сегодняшнему дню в осветительные приборы превращены листья кресс-салата, базилика и табака. В будущем авторы разработки планируют продлить время работы живых фонарей и насытить люминофором деревья, чтобы можно было высаживать их вдоль дорог. Тогда за световой день липы и клены могли бы впитывать фотоны, а ночью освещать проезжую часть. Для самих растений такой дополнительный функционал абсолютно безвреден.

Людям всегда был нужен свет. Со времен костров в первобытных пещерах постоянно придумываются новые технологии, идет поиск новых источников энергии и способов сделать окружающее пространство светлее. Человечество уже может легко превратить ночь в день и не делает этого только потому, что нуждается и в темноте тоже.

Электричество 4.0: устойчивые интеллектуальные энергетические системы для питания всего мира

1. Что такое Электричество 4.0?   

Электричество, несомненно, является одним из наиболее важных технологических достижений. Оно играет важную роль в сдерживании роста уровня загрязнения и глобального потепления в допустимых пределах. Кроме того, с масштабной конвергенцией цифровых технологий и электричества мы внедрились в новый мир электричества, т.е. Электричества 4.0. Оно относится к устойчивым методам генерации энергии и экономичным и эффективным использованием производимой энергии. Электричество 4.0 будет поддерживаться возобновляемыми источниками энергии в сочетании с искусственным интеллектом, облачными вычислениями и другими инструментами цифровой эры, что приведет к максимизации энергоэффективности.      

2. Что такое интеллектуальное управление энергией?   

Интеллектуальное управление энергопотреблением помогает превратить данные в логические и значимые аналитические данные для развития синергетического эффекта между коммерческими потребителями и профессионалами в области энергоснабжения при одновременном повышении энергоэффективности. Интеллектуальная система управления энергопотреблением — это компьютерная система, предназначенная для мониторинга, управления, измерения и оптимизации энергопотребления на заводе, в здании или в любом здании.    

В области интеллектуального управления энергией важную роль играют цифровые технологии, такие как мониторинг и измерение. Кроме того, приложения, аналитика, интеллектуальные устройства и программное обеспечение позволяют людям еще более эффективно использовать интеллектуальную энергию. Это означает, что мы можем реализовать значительный неиспользованный потенциал для «умной» экономии энергии. Компания Schneider Electric раскрывает свой потенциал для построения «Нового электрического мира» вместе с нашими заказчиками. Мы обеспечиваем интеллектуальную энергию в зданиях, домах, центрах обработки данных, отраслях и энергосетях.      

3. В чем важность системы Электричество 4.0?   

Электричество 4.0, которое занимается устойчивыми методами генерации электроэнергии, обеспечивает множество преимуществ, включая увеличение электрификации, расширение использования возобновляемых источников энергии, смягчение последствий изменения климата и многое другое. Кроме того, оно помогает нам достичь нулевых целей по выбросам углекислого газа и демонстрирует высокий процент сокращений, необходимых для передачи энергии. Особенно для электроэнергетической промышленности, Электричество 4.0 полностью изменило характер своей работы. Энергетические компании начали переходить к возобновляемым источникам энергии, внедрению цифровых технологий, и в настоящее время полным переходом на Электричество 4.0 для предоставления умной энергии потребителям.   

Компания Schneider Electric стремится использовать систему Электричество 4.0 в жилых домах, промышленности и другой инфраструктуре с помощью наших систем, продуктов, программного обеспечения и исключительных услуг. Мы помогаем вам развивать сети будущего, центры обработки данных будущего, дома будущего и многое другое с помощью наших динамичных цифровых инноваций.

Эксперт рассказал, как сделать плату за электричество в РФ справедливее

https://ria.ru/20210408/elektrichestvo-1727333402.html

Эксперт рассказал, как сделать плату за электроэнергию справедливее

Эксперт рассказал, как сделать плату за электричество в РФ справедливее

Эксперт рассказал, как сделать плату за электроэнергию справедливее

Сделать плату за электроэнергию в РФ более справедливой можно, в частности, с помощью либерализации цен на нее, то есть ослабления госрегулирования в этой. .. РИА Новости, 08.04.2021

2021-04-08T11:30

2021-04-08T11:30

2021-04-08T13:34

экономика

жкх

россия

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdnn21.img.ria.ru/images/07e5/01/19/1594460907_0:192:2959:1856_1920x0_80_0_0_866436c93e900b16b81738f99ad6c10d.jpg

МОСКВА, 8 апр — РИА Новости. Сделать плату за электроэнергию в РФ более справедливой можно, в частности, с помощью либерализации цен на нее, то есть ослабления госрегулирования в этой области, заявил РИА Новости ведущий эксперт направления «Экономика энергетики и климат» Центра стратегических разработок Олег Колобов.Он напомнил, что перекрестное субсидирование, при котором за более низкие тарифы на электроэнергию для населения и других потребителей, кто приравнен к нему, доплачивают остальные, — одна из основных проблем российской электроэнергетики, и ее решение требует целого комплекса мер.При этом он считает, что необходимо также пересмотреть состав льготных категорий. Например, население, проживающее в квартирах с электроплитами (современные новостройки и многоэтажные многоквартирные дома), часто характеризуется высокими доходами.Ранее в четверг газета «Известия» сообщила со ссылкой на протокол совещания Госсовета РФ по направлению «энергетика», что власти обсуждают введение дополнительных льгот для малоимущих по оплате электроэнергии. Речь о субсидировании тарифов на электроэнергию для социально незащищенных слоев населения. Такая мера может быть реализована в случае перехода к экономически обоснованным тарифам, который предусматривает повышение тарифов для граждан с высоким доходом.

https://ria.ru/20210402/tarify-1603993234.html

https://realty.ria.ru/20210323/pereplata-1602429465.html

россия

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2021

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og. xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdnn21.img.ria.ru/images/07e5/01/19/1594460907_115:0:2846:2048_1920x0_80_0_0_527541319257617ebb3ec5086e72e6c3.jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

экономика, жкх, россия

МОСКВА, 8 апр — РИА Новости. Сделать плату за электроэнергию в РФ более справедливой можно, в частности, с помощью либерализации цен на нее, то есть ослабления госрегулирования в этой области, заявил РИА Новости ведущий эксперт направления «Экономика энергетики и климат» Центра стратегических разработок Олег Колобов.

Он напомнил, что перекрестное субсидирование, при котором за более низкие тарифы на электроэнергию для населения и других потребителей, кто приравнен к нему, доплачивают остальные, — одна из основных проблем российской электроэнергетики, и ее решение требует целого комплекса мер.

2 апреля 2021, 16:55

Эксперт объяснил рост тарифов на электроэнергию на Украине

«Во-первых, необходима постепенная либерализация цен для населения и других льготников. Либерализация должна быть поэтапной, с понятным пояснением для потребителей. При этом нежелателен старт в период снижения доходов населения. Льготы для населения необходимо оставлять, но делать их адресными. Помочь осуществить мягкий переход к нерегулируемым ценам может, например, введение прогрессивной шкалы тарифов на электроэнергию в зависимости от объема потребления, которая успешно применяется в Республике Крым и городе Севастополе», — сказал Колобов.

При этом он считает, что необходимо также пересмотреть состав льготных категорий. Например, население, проживающее в квартирах с электроплитами (современные новостройки и многоэтажные многоквартирные дома), часто характеризуется высокими доходами.

23 марта 2021, 09:55Москва Сегодня: мегаполис для жизниЖилинспекция помогла москвичам вернуть переплату за электроэнергию

«Во-вторых, требуется масштабная ревизия надбавок к цене мощности с целью сокращения финансовой нагрузки на потребителей оптового рынка электроэнергии и мощности (ОРЭМ), которая транслируется и на розничных потребителей, а также продолжение работы по оптимизации издержек генерирующих, сетевых и сбытовых компаний», — добавил Колобов.

Ранее в четверг газета «Известия» сообщила со ссылкой на протокол совещания Госсовета РФ по направлению «энергетика», что власти обсуждают введение дополнительных льгот для малоимущих по оплате электроэнергии. Речь о субсидировании тарифов на электроэнергию для социально незащищенных слоев населения. Такая мера может быть реализована в случае перехода к экономически обоснованным тарифам, который предусматривает повышение тарифов для граждан с высоким доходом.

Как получить бесплатное электричество в квартире | Строительный журнал САМаСТРОЙКА

Многие люди хотели бы получать бесплатное электричество, однако бесплатным бывает только сыр в мышеловке. На самом деле, есть несколько способов получения бесплатной электроэнергии, для питания, например, светодиодного освещения, а также других, маломощных электропотребителей.

В данной статье строительного журнала samastroyka.ru будет рассказано о том, как и из чего, можно получить бесплатную электроэнергию, так сказать, не выходя из квартиры.

Как получить бесплатное электричество

Способ 1 — получение электроэнергии за счет перекоса фаз. Данный способ получения бесплатного электричества, основан на так называемом «перекосе фаз». Очень часто напряжение здесь может быть до 20 Вольт, которых хватит для того, чтобы зажечь декоративную подсветку или небольшие светодиодные лампы.

Данный способ получения бесплатной электроэнергии подойдёт в том случае, если в доме есть модульное заземление или громоотвод. Напряжение снимается с заземления и с рабочего нуля в розетке. При этом очень важно знать, где именно находится ноль, а где фаза. Как найти фазу и ноль без приборов, читайте на сайте строительного журнала.

Также, чтобы электричество было действительно бесплатное, а не учитывалось, нужно чтобы в доме был установлен дисковый электросчетчик. Новые приборы учёта электричества умеют определять «землю» и «реверс», поэтому с ними ничего не получится сделать. Можно попробовать взять ноль до счетчика, например, с ящика в котором он установлен.

Способ 2 — использования водяных генераторов. Такие генераторы вырабатывают электроэнергию за счет воды, которая через них будет проходить. Например, можно установить водяной генератор в квартире с централизованным отоплением или водопроводом. При этом в системе отопления водяной генератор нужно устанавливать, только перед радиатором, чтобы он не мешал нормальному функционированию отопительной системы.

Водяной генератор стоит относительно недорого, а заказать и купить его можно, например, на Алиэкспресс. Получится установить его и в водопроводную трубу перед смесителем. Как и в первом случае, бесплатное электричество будет вырабатываться за счет напора воды.

Получение электричества из воздуха

Способ 3 — использование энергии воздуха. На самом деле, бесплатную электроэнергию из воздуха получают уже сравнительно давно. Однако можно попробовать это сделать прямо в квартире, если позволяет вентиляция.

В данном случае в ней должна быть достаточно большая тяга, чтобы под воздействием энергии воздуха приводился в движение ветрогенератор. Данной электроэнергии вполне хватит для подключения небольших источников светодиодного освещения.

Теперь вы знаете, из чего и как можно получить бесплатное электричество в квартире. Если какие-то из способов не были учтены в данной статье строительного журнала, просьба поделиться ими в комментариях.

Читайте также:

Центр данных по альтернативным видам топлива: производство и распределение электроэнергии

Подключаемые гибридные электромобили (PHEV) и полностью электрические транспортные средства (EV), в совокупности называемые подключаемыми электромобилями (PEV), накапливают электроэнергию в батареях для питания одного или нескольких электродвигателей. Аккумуляторы заряжаются в основном путем подключения к внешним источникам электроэнергии, произведенным из природного газа, угля, ядерной энергии, энергии ветра, гидроэнергетики и солнечной энергии.

EV, а также PHEV, работающие в полностью электрическом режиме, не производят выхлопных газов.Однако существуют выбросы, связанные с большей частью производства электроэнергии в Соединенных Штатах. Дополнительную информацию о местных источниках электроэнергии и выбросах см. в разделе «Выбросы».

Производство

По данным Управления энергетической информации США, в 2019 году большая часть электроэнергии в стране производилась за счет природного газа, угля и ядерной энергии.

Электроэнергия также производится из возобновляемых источников, таких как гидроэнергетика, биомасса, энергия ветра, геотермальная и солнечная энергия.В совокупности возобновляемые источники энергии выработали около 17% электроэнергии страны в 2019 году.

За исключением фотоэлектрической (PV) генерации, первичные источники энергии используются прямо или косвенно для приведения в движение лопастей турбины, соединенной с электрогенератором. Турбогенераторная установка преобразует механическую энергию в электрическую. В случае природного газа, угля, ядерного деления, биомассы, нефти, геотермальной и солнечной энергии производимое тепло используется для создания пара, который приводит в движение лопасти турбины.В случае ветряной и гидроэнергетики лопасти турбины приводятся в движение непосредственно потоками ветра и воды соответственно. Солнечные фотоэлектрические панели преобразуют солнечный свет непосредственно в электричество с помощью полупроводников.

Количество энергии, производимой каждым источником, зависит от сочетания видов топлива и источников энергии, используемых в вашем районе. Чтобы узнать больше, см. раздел о выбросах. Узнайте больше о производстве электроэнергии от Управления энергетической информации Министерства энергетики США.

Передача и распределение электроэнергии

Электроэнергия в Соединенных Штатах часто перемещается на большие расстояния от генерирующих мощностей до местных распределительных подстанций по передающей сети протяженностью почти 160 000 миль высоковольтных линий электропередачи.Генерирующие объекты обеспечивают электроэнергию в сеть при низком напряжении, от 480 вольт (В) на малых генерирующих объектах до 22 киловольт (кВ) на более крупных электростанциях. Как только электроэнергия выходит из генерирующего объекта, напряжение увеличивается или «повышается» с помощью трансформатора (типовой диапазон от 115 кВ до 765 кВ), чтобы минимизировать потери мощности на больших расстояниях. По мере того, как электроэнергия передается по сети и поступает в районы нагрузки, напряжение понижается трансформаторами подстанции (диапазоны от 69 кВ до 4.16 кВ). Чтобы подготовиться к подключению клиентов, напряжение снова снижается (бытовые потребители используют 120/240 В; коммерческие и промышленные потребители обычно используют 208/120 В или 480/277 В).

Подключаемые к сети автомобили и мощность электрической инфраструктуры

Полностью электрические автомобили и гибридные электромобили с подзарядкой от сети представляют новый спрос на электроэнергию, но вряд ли в ближайшем будущем они истощат наши существующие генерирующие ресурсы. Значительное увеличение количества этих транспортных средств в Соединенных Штатах не обязательно потребует добавления новых мощностей по выработке электроэнергии в зависимости от того, когда, где и на каком уровне мощности заряжаются транспортные средства.

Спрос на электроэнергию растет и падает в зависимости от времени суток и времени года. Мощности по производству, передаче и распределению электроэнергии должны быть в состоянии удовлетворить спрос в периоды пикового использования; но большую часть времени инфраструктура электроснабжения не работает на полную мощность. В результате электромобили и гибриды PHEV могут практически не создавать потребности в дополнительных мощностях.

Согласно исследованию Тихоокеанской северо-западной национальной лаборатории, существующая электроэнергетическая инфраструктура США имеет достаточную мощность для удовлетворения около 73% энергетических потребностей легковых автомобилей страны.Согласно моделям развертывания, разработанным исследователями из Национальной лаборатории возобновляемых источников энергии (NREL), разнообразие электрических нагрузок домашних хозяйств и нагрузок электромобилей должно способствовать внедрению и росту рынка PEV при расширении сетей «умных сетей». Сети интеллектуальных сетей обеспечивают двустороннюю связь между коммунальным предприятием и его клиентами, а также наблюдение за линиями электропередачи с помощью интеллектуальных счетчиков, интеллектуальных приборов, возобновляемых источников энергии и энергосберегающих ресурсов. Сети интеллектуальных сетей могут обеспечивать возможность мониторинга и защиты жилой распределительной инфраструктуры от любых негативных воздействий из-за увеличения спроса на электроэнергию для транспортных средств, поскольку они способствуют зарядке в непиковые периоды и снижают затраты для коммунальных служб, сетевых операторов и потребителей.

Анализ NREL также продемонстрировал потенциал синергии между PEV и распределенными источниками возобновляемой энергии. Например, маломасштабные возобновляемые источники энергии, такие как солнечные батареи на крыше, могут как обеспечивать чистую энергию для транспортных средств, так и снижать спрос на распределительную инфраструктуру за счет выработки электроэнергии рядом с точкой потребления.

Коммунальные предприятия, производители транспортных средств, производители зарядного оборудования и исследователи работают над тем, чтобы PEV плавно интегрировались в U.С. электроэнергетическая инфраструктура. Некоторые коммунальные службы предлагают более низкие тарифы в непиковое время, чтобы стимулировать зарядку жилых транспортных средств, когда спрос на электроэнергию самый низкий. Транспортные средства и многие типы зарядного оборудования (также известного как оборудование для питания электромобилей или EVSE) можно запрограммировать на отсрочку зарядки до непикового времени. «Умные» модели даже способны связываться с сетью, агрегаторами нагрузки или владельцами объектов/домов, что позволяет им автоматически взимать плату, когда спрос на электроэнергию и цены на нее оптимальны; например, когда цены самые низкие, соответствующие местным потребностям распределения (таким как температурные ограничения) или соответствующие возобновляемым источникам энергии.

Как ваш штат производит электричество?

В целом, ископаемые виды топлива по-прежнему доминируют в производстве электроэнергии в Соединенных Штатах. Но переход от угля к газу и возобновляемым технологиям помог снизить выбросы углекислого газа и другие виды загрязнения.

В прошлом году природный газ был крупнейшим источником электроэнергии в 20 штатах, а ветер стал лидером в Айове и Канзасе. Уголь оставался основным источником энергии в 15 штатах, что примерно вдвое меньше, чем два десятилетия назад.

Источник: Управление энергетической информации США.

Снижение цен на уголь в значительной степени было вызвано рыночными силами. Г-н Трамп настаивал на ослаблении регулирования в промышленности, но в течение его первого срока было закрыто больше угольных электростанций, чем за последние четыре года президентства Барака Обамы, поскольку коммунальные предприятия сочли более экономичным переход на более дешевый природный газ и все чаще возобновляемую энергию.

«Мы и дальше будем свидетелями вывода угольных электростанций из эксплуатации», — сказала Кейт Коншник, возглавляющая программу по климату и энергетике в Никольском институте решений в области экологической политики Университета Дьюка.«Сейчас большой вопрос заключается в том, заменят ли эти электростанции газом или более чистой энергией».

В последние годы природный газ вышел на первое место, но экологически чистые технологии, такие как ветряные турбины, солнечные панели и аккумуляторы, настолько упали в цене, что теперь часто являются самым дешевым доступным вариантом. Обеспокоенность по поводу изменения климата побудила многие штаты отказаться от газа, который, хотя и чище угля, является основным источником выбросов углекислого газа и метана, вызывающих потепление планеты.

В то время как г-н Трамп проводит кампанию, обещая сохранить зависимость Америки от ископаемого топлива — отстаивая уголь в 2016 году и добычу нефти и природного газа в этом году — голубые штаты, такие как Калифорния, двигаются в противоположном направлении, требуя от коммунальных предприятий использовать все больше энергии ветра. и солнечной энергии каждый год. В прошлом году Калифорния произвела примерно половину своей электроэнергии из возобновляемых источников и служит испытательным полигоном для того типа перехода от угля, нефти и природного газа, который Джозеф Р.Байден-младший пообещал продолжить, если его изберут президентом.

Ниже мы показали, как изменилось производство электроэнергии в каждом штате в период с 2001 по 2019 год, используя данные Управления энергетической информации США. Прокрутите вниз или перейдите к своему состоянию:

В 2001 году уголь обеспечивал более половины электроэнергии, производимой в Алабаме, но с тех пор несколько стареющих угольных электростанций штата закрылись или перешли на сжигание более дешевого природного газа. В 2019 году основным источником электроэнергии в штате был природный газ, за ​​которым следовала атомная энергетика.Уголь занял третье место, обеспечивая менее одной пятой выработки электроэнергии в штате.

Алабама производит больше электроэнергии, чем потребляет, и обычно отправляет около трети своей продукции в близлежащие штаты.

Природный газ был основным источником выработки электроэнергии на Аляске с 2001 года, но за это время доля гидроэлектроэнергии увеличилась. Государство стремится к 2025 году получать 50 процентов своей электроэнергии из возобновляемых источников, но эта цель является добровольной и не имеет юридической силы.

На Аляске есть собственная электрическая сеть, а это означает, что «независимо от того, сколько электроэнергии там производится, столько они и потребляют», — сказал Гленн МакГрат, аналитик энергосистем из Управления энергетической информации. «Это настолько изолировано, насколько это возможно».

Многие сельские общины Аляски не подключены к основной сети и используют дизельные генераторы для выработки энергии, хотя ветряные турбины меньшего размера также становятся обычным вариантом.

Уголь был основным источником выработки электроэнергии в Аризоне до 2016 года, когда природный газ начал его превосходить.В штате также находится крупнейшая в стране атомная электростанция — генерирующая станция Пало-Верде, которая производит почти треть электроэнергии Аризоны.

В последние годы сокращение добычи угля в Аризоне ускорилось в результате конкуренции со стороны дешевого газа. Электростанция штата Навахо, крупнейшая угольная электростанция на Западе, закрылась в 2019 году, несмотря на усилия администрации Трампа по ее спасению.

Аризона поставляет электричество на юго-запад.Штат обладает богатыми солнечными ресурсами, и его крупнейшая коммунальная служба, Arizona Public Service, поставила перед собой добровольные цели получать 45 процентов своей электроэнергии из возобновляемых источников к 2030 году и полностью отказаться от выбросов углерода к 2050 году. Однако в прошлом коммунальная служба лоббировала против предложений закрепить эти возобновляемые цели в законе.

Уголь был крупнейшим источником электроэнергии, производимой в Арканзасе каждый год в период с 2001 по 2019 год, но его доля на рынке со временем постепенно снижалась.Природный газ, тем временем, расширился и обеспечил 33 процента электроэнергии, произведенной в штате в прошлом году, по сравнению с 6 процентами в 2001 году.

Арканзас производит больше электроэнергии, чем потребляет, и экспортирует энергию в близлежащие штаты.

Природный газ был основным источником электроэнергии в Калифорнии с 2001 года. Но примерно половина электроэнергии, произведенной в штате в прошлом году, была получена из возобновляемых источников, включая солнечную, ветровую, геотермальную и гидроэлектроэнергию.

Солнечная энергия, в частности, быстро росла за последнее десятилетие, в основном из-за государственной политики, такой как агрессивный стандарт возобновляемой электроэнергии.В 2018 году законодательный орган Калифорнии потребовал, чтобы коммунальные предприятия к 2045 году получали всю свою электроэнергию из источников с нулевым выбросом углерода. Штат добавляет большие литий-ионные батареи для хранения энергии и переосмысливает свои операции с сетью, чтобы справиться с увеличением солнечной энергии, которая работает только во время дневное время.

Калифорнийские коммунальные службы и регулирующие органы сейчас бьются над вопросом, как быстро они смогут сократить потребление природного газа, сохранив при этом надежное электроснабжение. В прошлом году около четверти электроэнергии, потребленной в штате, поступило из-за его пределов.(Импорт не показан на графике выше.) Лос-Анджелес по-прежнему импортирует некоторое количество угольной электроэнергии из Юты, но к 2025 году планирует заменить ее природным газом.

Подавляющее большинство электроэнергии, вырабатываемой в Колорадо, производится из ископаемого топлива: менее половины из угля и почти треть из природного газа. Но за последнее десятилетие ветроэнергетика росла. В 2019 году ветер был третьим по величине источником электроэнергии, производимой в Колорадо, на его долю приходилось почти пятая часть выработки электроэнергии в штате.

В Колорадо уже давно существует требование, согласно которому к 2020 году 30 процентов электроэнергии, продаваемой коммунальными предприятиями, должно поступать из возобновляемых источников. В прошлом году губернатор предложил пойти еще дальше, установив к 2040 году 100-процентную цель по производству электроэнергии из возобновляемых источников. сказал, что может сэкономить деньги, закрыв больше угольных электростанций в ближайшие годы и перейдя на сочетание солнечной энергии, ветра, батарей и газа.

Природный газ и атомная энергетика обеспечивали большую часть электроэнергии, вырабатываемой в Коннектикуте в период с 2001 по 2019 год.В последние годы природный газ рос, и в прошлом году на его долю приходилось более половины производства электроэнергии в штате по сравнению с 13 процентами почти два десятилетия назад. Угольная генерация в штате почти полностью исчезла, а последнюю оставшуюся угольную электростанцию ​​в Коннектикуте, Бриджпорт-Харбор, планируется закрыть в 2021 году.

В 2019 году пять процентов электроэнергии, вырабатываемой в Коннектикуте, приходилось на возобновляемые источники. Два года назад штат расширил свой стандарт возобновляемой энергии, потребовав, чтобы коммунальные предприятия к 2030 году получали 40 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников.

Природный газ заменил уголь в качестве основного источника электроэнергии, произведенной в Делавэре в 2010 году, и с тех пор производство угля значительно сократилось. Уголь обеспечивал 70 процентов электроэнергии, произведенной в Делавэре в 2008 году, пиковом году, но только 4 процента к 2019 году. Доля природного газа увеличилась более чем в четыре раза за тот же период.

Частично благодаря этому сдвигу выбросы углекислого газа в электроэнергетическом секторе штата за последнее десятилетие сократились.Делавэр потребует, чтобы к 2025 году коммунальные предприятия получали 25% своей электроэнергии из возобновляемых источников.

По данным EIA, электроэнергия, производимая в штате, обеспечивает «от двух третей до трех четвертей электроэнергии, продаваемой потребителям в Делавэре». Остальное поступает из соседних государств по региональной сети. (Импорт не показан на диаграмме выше.)

В 2001 году более трети электроэнергии, производимой во Флориде, приходилось на сжигание угля.Два года спустя природный газ превзошел уголь в качестве основного источника выработки энергии в штате, и с тех пор его доля в структуре энергопотребления штата продолжает увеличиваться. К 2017 году природный газ составлял три четверти производства электроэнергии во Флориде, что почти вдвое превышает средний показатель по стране.

Флорида является вторым по величине производителем электроэнергии в стране после Техаса, но по-прежнему зависит от импорта из соседних штатов для удовлетворения потребительского спроса.

Несмотря на свое прозвище, Солнечный штат по-прежнему вырабатывает относительно мало энергии от солнечных батарей и не имеет потребности в возобновляемой электроэнергии.

Уголь обеспечивал большую часть выработки электроэнергии в Грузии в 2000-х годах, но его доля снизилась по мере увеличения мощности природного газа. В последние годы доля рынка угля резко сократилась, поскольку несколько стареющих угольных электростанций были выведены из эксплуатации.

Коммунальные предприятия штата находятся в процессе строительства двух новых ядерных реакторов, единственных новых ядерных проектов, строящихся в настоящее время в стране.

Около одной десятой выработки электроэнергии в Грузии в прошлом году приходилось на возобновляемые источники, в основном биомассу и гидроэлектроэнергию.Но солнечная энергетика сейчас быстро растет. Хотя Джорджия не устанавливает каких-либо требований к возобновляемым источникам энергии в масштабах штата, город Атланта поставил цель получать всю электроэнергию из возобновляемых источников к 2035 году.

Последние два десятилетия Гавайи в значительной степени зависят от импортируемой нефти для производства электроэнергии. Но у штата есть смелый план по производству всей энергии из местных возобновляемых источников к 2045 году.

В прошлом году на возобновляемые источники энергии приходилось почти четверть электроэнергии, производимой на Гавайях, по сравнению с менее чем одной десятой в 2001 году.Солнечная генерация, в основном из небольших панелей на крышах, быстро росла в штате за последние пять лет.

Гидроэнергетика долгое время доминировала в структуре производства электроэнергии в Айдахо. Но в последние годы его доля снизилась, отчасти из-за засухи. Штат по-прежнему производит большую часть своей электроэнергии из возобновляемых источников, при этом в прошлом году на ветер приходилось 16 процентов выработки электроэнергии в штате по сравнению с менее чем 2 процентами десять лет назад. Солнечная энергия, хотя и остается небольшой, значительно увеличилась в период с 2016 по 2019 год.

Айдахо в значительной степени зависит от импорта из-за пределов штата, чтобы удовлетворить около одной трети своего спроса на электроэнергию. В прошлом большая часть этой импортируемой электроэнергии поступала от угольных электростанций в соседних штатах, хотя Орегон закрыл свою последнюю угольную электростанцию ​​в октябре, а другие близлежащие угольные электростанции планируется закрыть в течение следующих нескольких лет. (Импорт не показан на диаграмме.) Национальная лаборатория Айдахо, федеральный исследовательский центр, также планирует построить несколько первых в своем роде малых ядерных реакторов в конце этого десятилетия.

Ядерная энергетика является основным источником производства электроэнергии в Иллинойсе и обеспечивает более половины электроэнергии, производимой в штате в течение почти двух десятилетий. Уголь также является важным источником энергии — ненадолго превзойдя атомную энергетику в качестве основного источника выработки энергии в 2004 году и снова в 2008 году, — но его доля в последние годы снизилась, поскольку старые электростанции были выведены из эксплуатации или переведены на сжигание природного газа. Как природный газ, так и энергия ветра увеличились за последнее десятилетие.

Иллинойс требует, чтобы коммунальные предприятия к 2025 году получали 25 процентов своей электроэнергии из возобновляемых источников, хотя эта политика изо всех сил пыталась набрать обороты.Штат производит значительно больше электроэнергии, чем потребляет, и отправляет около одной пятой своей избыточной мощности в штаты Средней Атлантики и Среднего Запада через региональные сети.

Уголь производил большую часть электроэнергии, производимой в Индиане в течение почти двух десятилетий, но в последние годы на смену пришли природный газ и энергия ветра. В 2001 году на природный газ приходилось 2 процента производства электроэнергии в штате, но в 2019 году он вырос до почти 31 процента.

В то время как менее одной десятой электроэнергии штата поступает из возобновляемых источников энергии, все больше коммунальных предприятий проявляют интерес к более чистым технологиям по экономическим причинам.В 2018 году Коммунальная служба Северной Индианы заявила, что может сэкономить деньги, выведя из эксплуатации несколько существующих угольных электростанций в течение следующего десятилетия и заменив их в основном сочетанием новой солнечной и ветровой энергии, а также аккумуляторных батарей.

Энергия ветра резко возросла в Айове за последнее десятилетие. В 2001 году ветряные турбины обеспечивали всего 1 процент электроэнергии, производимой в штате, но к 2019 году они выросли до 42 процентов. Айова по-прежнему производит более одной трети своей электроэнергии из угля, но с 2010 года доля выработки электроэнергии за счет угля снизилась.

В абсолютном выражении штат, один из самых ветреных в стране, в прошлом году был третьим по величине производителем ветровой энергии после Техаса и Оклахомы. Айова производит больше энергии, чем потребляет, отправляя излишки в близлежащие штаты.

Айова в 1983 году стала первым штатом, принявшим закон, обязывающий коммунальные предприятия получать некоторое количество электроэнергии из возобновляемых источников, но с тех пор штат не обновлял эти стандарты.

Как и во многих штатах Великих равнин, в Канзасе за последнее десятилетие наблюдался значительный рост ветровой энергетики, поскольку разработчики установили тысячи турбин для захвата сильных ветров, дующих в открытых прериях.В прошлом году ветер превзошел уголь и стал крупнейшим источником электроэнергии в Канзасе.

В 2009 году законодательный орган штата Канзас принял стандарт по возобновляемым источникам энергии, согласно которому коммунальные предприятия должны получать все большее количество электроэнергии из ветра, солнца и других возобновляемых источников — до 20 процентов к 2020 году. Но в 2015 году законодатели штата смягчили эту меру, сделав цель добровольной. после того, как консервативные группы, связанные с промышленным конгломератом Koch Industries, выступили против более строгого стандарта.

Уголь по-прежнему вырабатывает подавляющее большинство электроэнергии, производимой в Кентукки, штате, где давно ведется добыча угля. В прошлом году уголь был источником 73 процентов выработки электроэнергии в штате, но на протяжении большей части последних двух десятилетий эта цифра колебалась ближе к 90 процентам.

С 2014 года ряд старых угольных электростанций Кентукки были закрыты или переведены на сжигание природного газа, который в прошлом году обеспечивал 21 процент производства электроэнергии в штате. В феврале администрация долины Теннесси закрыла 50-летнюю угольную электростанцию ​​в западном Кентукки, сославшись на проблемы с затратами и техническим обслуживанием, несмотря на давление со стороны администрации Трампа с целью сохранить электростанцию ​​в рабочем состоянии.

Природный газ обеспечивает основную часть производства электроэнергии в Луизиане, которая входит в пятерку крупнейших производителей природного газа в стране. В прошлом году на долю газа приходилось 69 процентов электроэнергии, производимой в штате, по сравнению с 46 процентами в 2001 году. За это время угольная генерация сократилась, опустившись со второго по величине источника энергии в штате на третье место. .

Луизиана также получает электроэнергию из соседних штатов. (Импорт не показан на диаграмме выше.)

Четыре пятых электроэнергии, произведенной в штате Мэн в прошлом году, поступили из возобновляемых источников. Большая часть этого была от плотин гидроэлектростанций и заводов по производству биомассы, которые сжигают древесину и другие органические материалы. Но Мэн также является лидером Новой Англии в области ветроэнергетики, и ветряные турбины произвели четверть электроэнергии в штате в прошлом году.

В 2000 году государство потребовало, чтобы поставщики электроэнергии получали 30 процентов электроэнергии, которую они продают потребителям, из существующих возобновляемых источников.В этот закон несколько раз вносились поправки, и в прошлом году законодательный орган поставил новую цель: к 2050 году коммунальные предприятия должны получать 100% электроэнергии, которую они продают, из возобновляемых источников.

Общий объем электроэнергии, производимой в штате Мэн, снизился с 2010 года, и штат все больше полагался на импорт энергии из Канады. (Импорт не включен в диаграмму выше.)

Угольная энергия резко сокращалась в Мэриленде за последнее десятилетие, и в прошлом году было произведено всего 14 процентов электроэнергии в штате.В то же время значительно увеличилась доля электроэнергии, вырабатываемой за счет атомной энергетики и природного газа.

Солнечная энергия, хотя и небольшая, за последние несколько лет быстро росла. С 2004 года государство требует, чтобы все большее количество электроэнергии, продаваемой коммунальными предприятиями, поступало из возобновляемых источников, и в прошлом году поставило цель на уровне 50 процентов к 2030 году.

Мэриленд потребляет больше электроэнергии, чем производит, и импортирует почти половину своей электроэнергии из других штатов Средней Атлантики через региональную сеть.(Импорт не включен в диаграмму выше.)

За последние два десятилетия доля природного газа в производстве электроэнергии в Массачусетсе увеличилась более чем вдвое, в то время как производство угля и нефти за это время резко сократилось. В прошлом году единственная в штате атомная электростанция, которая производила одну десятую электроэнергии, была закрыта навсегда, отчасти из-за конкуренции со стороны природного газа.

Количество электроэнергии, вырабатываемой из солнечной энергии, неуклонно растет в Массачусетсе с 2013 года.Законодательный орган штата недавно ужесточил свой мандат для коммунальных предприятий по продаже электроэнергии из возобновляемых источников, повысив требование до 35 процентов от общего объема продаж к 2030 году и увеличивая его на 1 процент каждый год после этого. Новое законодательство также направлено на поощрение развития морской ветроэнергетики, и первый такой проект планируется запустить к 2023 году.

Массачусетс потребляет больше электроэнергии, чем производит в штате, а остальное получает от близлежащих штатов через региональную сеть.(Импорт не показан на диаграмме выше)

Уголь оставался основным источником электроэнергии, производимой в Мичигане в прошлом году, но его доля в выработке снизилась с 60 процентов в 2001 году до 32 процентов в 2019 году. За тот же период доля природного газа увеличилась более чем вдвое. Энергия ветра, основной возобновляемый источник энергии в Мичигане, обеспечила почти 5 процентов электроэнергии, произведенной в штате в прошлом году.

В 2008 году штат Мичиган потребовал, чтобы коммунальные предприятия и другие поставщики электроэнергии к 2015 году получали не менее 10 процентов электроэнергии, которую они продают клиентам, из возобновляемых источников.Эта цель была достигнута, и к 2021 году цель по возобновляемым источникам энергии была впоследствии повышена до 15 процентов.

Уголь был основным источником электроэнергии, вырабатываемой в Миннесоте в течение последних двух десятилетий. Но доля угольной генерации упала с 66 процентов в 2001 году до 31 процента в 2019 году по мере расширения производства энергии ветра и природного газа.

Миннесота требует от своих электроэнергетических компаний получать все большую часть своей энергии из возобновляемых источников, при этом цель для многих компаний возрастет до 25 процентов в 2025 году.В настоящее время Миннесота импортирует около одной пятой потребляемой электроэнергии из других штатов, имеющих общую региональную сеть. (Импорт не показан на диаграмме выше.)

Природный газ обеспечил более трех четвертей электроэнергии, вырабатываемой в Миссисипи в прошлом году. Уголь, который когда-то был основным источником электроэнергии в штате, резко сократился за последнее десятилетие, уступив место более дешевому природному газу. Уголь обеспечивал 36 процентов электроэнергии, произведенной в штате в 2001 году, но всего 7 процентов в 2019 году.

Структура производства электроэнергии в Миссури практически не изменилась за почти два десятилетия. Уголь обеспечивал подавляющую часть электроэнергии, вырабатываемой в штате в период с 2001 по 2019 год, и за это время его количество сократилось лишь незначительно, поскольку старые угольные электростанции отключились или перешли на сжигание природного газа.

Миссури потребует, чтобы коммунальные предприятия к 2021 году получали не менее 15 процентов продаваемой ими электроэнергии из возобновляемых источников, включая небольшое количество солнечной энергии.

Уголь был основным источником электроэнергии, производимой в Монтане в течение почти двух десятилетий, но его доля в выработке снизилась с 70 процентов в 2001 году до 52 процентов в прошлом году.Гидроэнергетика, второй по величине источник электроэнергии в штате, за это время увеличила свою долю до 35 процентов, хотя эта доля может колебаться из года в год в зависимости от наличия воды. Энергия ветра также выросла до 9 процентов от выработки электроэнергии в штате.

По данным EIA, жители Монтаны используют только около половины электроэнергии, производимой в штате. Большая часть остальных отправляется в Вашингтон и Орегон.

Уголь был основным источником электроэнергии, производимой в Небраске в течение почти двух десятилетий, но его доля в выработке снизилась в период с 2001 по 2019 год.Ядерная энергетика обеспечивала в среднем около четверти производства электроэнергии в штате в то время, но ее доля менялась из года в год. В 2016 году одна из двух атомных станций штата, Форт-Калхун, была окончательно остановлена ​​по экономическим причинам.

За последнее десятилетие доля ветра в общей выработке электроэнергии увеличилась, и в прошлом году на его долю пришлось 19 процентов электроэнергии, произведенной в штате. По словам Э.IA, но не предъявляет требований к возобновляемой электроэнергии.

В 2005 году природный газ вытеснил уголь в качестве основного источника электроэнергии в Неваде. Крупнейшая в штате угольная электростанция, генерирующая станция Мохаве, была отключена в конце того же года, и с тех пор в Неваде закрылись другие угольные генераторы из-за конкуренции со стороны дешевого природного газа. и государственные законы, которые требуют развития возобновляемых источников энергии.

В прошлом году природный газ обеспечил 64 процента электроэнергии, произведенной в штате, за ним последовала солнечная энергия, на долю которой пришлось 14 процентов.Штат также получает почти одну десятую часть своей энергии от геотермальных электростанций, которые собирают тепло из недр земли.

Быстрый рост солнечной энергетики в последние годы побудил государство усилить свои цели в отношении возобновляемых источников энергии. До недавнего времени Невада требовала, чтобы к 2025 году 25 процентов электроэнергии, продаваемой коммунальными предприятиями штата, поступала из возобновляемых источников. из безуглеродных источников к 2050 году.

Основная часть электроэнергии, вырабатываемой в Нью-Гэмпшире, поступает от атомной электростанции Сибрук, крупнейшего реактора в Новой Англии. Природный газ обеспечивает около одной пятой электроэнергии, производимой в штате с начала 2000-х годов, когда начали работать две новые электростанции. Доля электроэнергии Нью-Гэмпшира, вырабатываемой из угля, за последние два десятилетия сократилась с 25 процентов в 2001 году до менее 2 процентов в 2019 году.

Государство требует, чтобы коммунальные предприятия к 2025 году получали 25 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников.Двумя ведущими источниками возобновляемой энергии в штате являются биомасса или энергия, получаемая от сжигания древесины и других органических веществ, и гидроэлектроэнергия.

Нью-Гэмпшир производит больше энергии, чем потребляет внутри штата, и отправляет около половины в соседние штаты через региональную электрическую сеть Новой Англии. (Экспорт не включен в диаграмму выше.)

Атомная энергетика была основным источником выработки электроэнергии в Нью-Джерси до недавнего времени, когда ее обогнал природный газ.В прошлом году на природный газ приходилось 55 процентов производства электроэнергии в штате, а на атомную энергию приходилось 36 процентов. Солнечная энергия обеспечивала 4 процента электроэнергии штата.

В 2018 году атомная электростанция штата Ойстер-Крик, старейшая в то время в стране, закрылась навсегда, отчасти из-за конкуренции со стороны дешевого природного газа. В том же году законодательный орган Нью-Джерси утвердил новые субсидии, чтобы сохранить прибыльность оставшихся трех атомных электростанций штата, при этом сторонники утверждали, что станции не производят выбросов и не способствуют изменению климата.

В то же время штат Нью-Джерси повысил стандарт возобновляемых источников энергии, требуя, чтобы к 2021 году 21 процент электроэнергии, продаваемой в штате, поступал из возобновляемых источников, а к 2025 году это требование увеличилось до 35 процентов, а к 2030 году — до 50 процентов. По данным EIA, потенциал морского ветра вдоль побережья штата

Государство получает часть энергии, которую оно потребляет, через региональную сеть Средней Атлантики. (Импорт не включен в диаграмму выше.)

Уголь был основным источником электроэнергии в Нью-Мексико на протяжении почти двух десятилетий. Но с 2004 года производство электроэнергии на угле сократилось из-за ужесточения правил качества воздуха, более дешевого природного газа и решения Калифорнии в 2014 году прекратить закупать электроэнергию, вырабатываемую из угля в соседних штатах.

Природный газ, ветер и солнечная энергия составляли немногим более половины электроэнергии, произведенной в Нью-Мексико в прошлом году, по сравнению с 15 процентами двумя десятилетиями ранее.В 2019 году законодательный орган штата принял закон, обязывающий коммунальные предприятия получать 50 процентов продаваемой ими электроэнергии из возобновляемых источников к 2030 году, а к 2045 году этот показатель увеличится до 100 процентов.

По данным EIA, Нью-Мексико обладает одним из самых высоких потенциалов солнечной энергетики в стране. Штат также направляет значительное количество электроэнергии в Калифорнию, которая давно поставила перед собой агрессивные цели в области возобновляемых источников энергии.

Природный газ и атомная энергетика обеспечивали большую часть электроэнергии, вырабатываемой в Нью-Йорке в течение почти двух десятилетий, и их доля увеличилась по мере сокращения использования угля в штате.За последнее десятилетие Нью-Йорк также производил около одной пятой своей электроэнергии за счет гидроэнергетики, крупнейшего в штате источника возобновляемой энергии.

В рамках амбициозного нового закона об изменении климата законодатели Нью-Йорка в прошлом году потребовали, чтобы к 2030 году коммунальные предприятия получали 70 процентов электроэнергии, которую они продают, из возобновляемых источников, а десятилетие спустя полностью прекратили выбросы парниковых газов. Ветряная и солнечная энергия в настоящее время составляют небольшую часть генерации в Нью-Йорке, вместе обеспечивая около 6 процентов электроэнергии штата в прошлом году.В настоящее время штат планирует построить крупные ветряные электростанции на шельфе в течение следующих двух десятилетий.

Нью-Йорк, как правило, потребляет больше энергии, чем производит, и импортирует часть электроэнергии из соседних штатов и Канады. (Импорт электроэнергии не включен в приведенную выше диаграмму.)

Уголь обеспечивал большую часть выработки электроэнергии в Северной Каролине в период с 2001 по 2011 год. Но 20 угольных установок штата закрылись в течение следующих шести лет, и к 2019 году уголь вырабатывал менее четверти электроэнергии штата.Природный газ и ядерная энергия производят около одной трети электроэнергии штата.

Северная Каролина в настоящее время является единственным южным штатом со значительной солнечной генерацией. Уникальная реализация государством многолетнего федерального мандата, Закона о политике регулирования коммунальных предприятий 1978 года, способствовала росту использования солнечной энергии в коммунальных масштабах. Северная Каролина также установила требование, чтобы к 2021 году коммунальные предприятия получали 12,5% электроэнергии, которую они продают потребителям, из возобновляемых источников энергии.А одна из крупнейших коммунальных компаний штата, Duke Energy, недавно объявила о своей цели свести свои выбросы к нулю к 2050 году, хотя тем временем она предложила построить больше заводов по производству природного газа.

Как и во многих штатах Великих равнин, ветровая энергетика в Северной Дакоте за последнее десятилетие получила широкое распространение. В прошлом году ветряные турбины произвели более четверти электроэнергии, производимой в штате, по сравнению с менее чем 2 процентами десятью годами ранее.

В 2007 году Законодательное собрание Северной Дакоты поставило перед коммунальными предприятиями добровольную цель: к 2015 году получать 10% электроэнергии, продаваемой потребителям, за счет возобновляемых или переработанных источников энергии — цель, которая была быстро перевыполнена.

Северная Дакота производит больше электроэнергии, чем потребляет в штате, и примерно половина отправляется соседям. (Экспорт не указан в таблице выше.)

В прошлом году штат Огайо впервые в своей истории произвел больше электроэнергии из природного газа, чем из угля. Хотя уголь был основным источником энергии в штате на протяжении десятилетий, в последние годы коммунальные предприятия закрыли несколько крупных угольных электростанций, поскольку бум гидроразрыва пласта или гидроразрыва пласта затопил штат дешевым природным газом.Доля электроэнергии в Огайо, вырабатываемой за счет газа, выросла с менее чем 3 процентов в 2009 году до 43 процентов в 2019 году.

Огайо производит еще 14 процентов своей электроэнергии на двух атомных электростанциях вдоль озера Эри, которые также сталкиваются с жесткой конкуренцией со стороны газа. В прошлом году законодатели штата Огайо одобрили новый законопроект, который будет предоставлять существующим атомным и угольным электростанциям почти 200 миллионов долларов в год в виде субсидий, чтобы поддерживать их работу, при этом ослабляя требования штата к возобновляемой электроэнергии.Но сейчас законодатели обсуждают, следует ли отменить этот законопроект после обвинений в том, что энергетические компании Огайо подкупили видных законодателей, чтобы добиться его принятия.

Большая часть электроэнергии, вырабатываемой в Оклахоме на протяжении большей части последних двух десятилетий, приходится на природный газ и уголь, которые часто конкурируют за звание главного источника электроэнергии в штате. Но в 2016 году ветер превзошел уголь как второй по величине источник электроэнергии в штате.

В прошлом году штат уступал только Техасу по общему производству электроэнергии с помощью ветра.

В 2010 году штат Оклахома потребовал, чтобы к 2015 году 15 процентов его генерирующих мощностей приходилось на возобновляемые источники. Он также определил природный газ как предпочтительный выбор для новых проектов, связанных с ископаемым топливом. К 2012 году штат превысил целевой показатель по возобновляемым источникам энергии.

Большая часть электроэнергии, производимой в Орегоне в любой данный год, поступает от плотин гидроэлектростанций, но точное количество может колебаться в зависимости от количества осадков. Энергия природного газа обычно увеличивается в засушливые годы и снижается в годы с обильными осадками.

За последнее десятилетие энергия ветра стала третьим по величине источником электроэнергии в штате. Стремясь стимулировать использование возобновляемых источников энергии, не связанных с гидроэлектростанциями, штат Орегон потребует от своих крупнейших коммунальных предприятий к 2040 году получать 50 процентов электроэнергии, которую они продают, из новых возобновляемых источников энергии. Программа охватывает проекты, внедренные или модернизированные с 1995 года, т. старая гидроэнергетика.

Уголь обеспечивал большую часть электроэнергии, производимой в Пенсильвании до 2014 года, когда он впервые упал ниже уровня ядерной энергии.За последнее десятилетие в штате наблюдался бум добычи природного газа с помощью гидроразрыва пласта или гидроразрыва пласта. В результате электроэнергетические компании закрывают старые угольные электростанции в пользу новых газовых турбин.

В прошлом году природный газ был основным источником электроэнергии, вырабатываемой в Пенсильвании, и избыток дешевого газа теперь оказывает экономическое давление и на атомные генераторы штата. Одна из атомных электростанций штата, Три-Майл-Айленд, в прошлом году была закрыта навсегда.Сторонники ядерной энергетики, утверждающие, что потеря этой безэмиссионной электроэнергии — плохая новость для изменения климата, добивались государственных субсидий, чтобы оставить оставшиеся реакторы открытыми.

Пенсильвания потребует, чтобы к 2021 году 18 процентов электроэнергии, которую коммунальные предприятия продают потребителям, приходилось на возобновляемые и альтернативные источники энергии, а не менее 0,5 процента приходилось на солнечную энергию. В прошлом году возобновляемые источники энергии составили около 5 процентов выработки электроэнергии в штате.

Пенсильвания является третьим по величине производителем электроэнергии в стране после Техаса и Флориды, а штат является основным поставщиком электроэнергии в Среднеатлантический регион.

В производстве электроэнергии в Род-Айленде преобладает природный газ, но энергия ветра и солнца, хотя и остается небольшой, в последние годы быстро растет.

Род-Айленд потребует, чтобы к 2035 году поставщики электроэнергии получали 38 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников. Штат потребляет больше электроэнергии, чем производит, а остальное получает от соседних штатов. (Импорт не включен в диаграмму выше.)

Большая часть электроэнергии, вырабатываемой в Южной Каролине, приходится на атомную энергетику, а природный газ и уголь занимают второе и третье места соответственно.Доля угля за последнее десятилетие снизилась по мере роста производства энергии из природного газа. В 2017 году коммунальные предприятия Южной Каролины отказались от планов строительства двух новых ядерных реакторов в штате после того, как многомиллиардный проект преследовали задержки и перерасход средств.

Южная Каролина производит больше энергии, чем потребляет, и отправляет излишки в соседние штаты.

Плотины гидроэлектростанций поставляли большую часть электроэнергии, вырабатываемой в Южной Дакоте на протяжении большей части последних двух десятилетий, но выработка угля превзошла гидроэнергетику в течение трех лет: 2001, 2004 и 2008 годов.С тех пор доля угля в структуре генерации штата снизилась, а доля энергии ветра увеличилась.

В прошлом году ветер был вторым по величине источником электроэнергии, производимой в Южной Дакоте, на его долю приходилось почти четверть выработки электроэнергии в штате.

Южная Дакота экспортирует электроэнергию в штаты центральной и западной части США.

Уголь обеспечивал большую часть электроэнергии, произведенной в Теннесси в период с 2001 по 2016 год, но его доля выработки снизилась за последнее десятилетие, поскольку природный газ стал более распространенным.В 2016 году новая атомная электростанция была наконец завершена в Теннесси после десятилетий задержек (пока что это единственный новый реактор, введенный в эксплуатацию в Соединенных Штатах в этом столетии). В результате в 2017 году угольная генерация впервые почти за два десятилетия опустилась ниже ядерной.

Теннесси потребляет больше энергии, чем производит, и восполняет дефицит за счет электроэнергии из близлежащих штатов. (Импорт не включен в диаграмму выше.)

Техас производит больше электроэнергии, чем любой другой штат, и с 2001 года природный газ является его основным источником выработки электроэнергии, а уголь находится на втором месте.Но доля угольной генерации снизилась по мере роста ветровой энергии. В 2014 году ветер обогнал атомную энергетику и стал третьим по величине источником электроэнергии в штате. Техас в настоящее время производит больше энергии от ветра, чем любой другой штат, а Оклахома и Айова занимают второе и третье места.

Хотя на солнечную энергию приходится лишь небольшая часть электроэнергии Техаса, штат по-прежнему является шестым по величине производителем солнечной энергии в стране, а мощность солнечной энергии удвоилась в период с 2017 по 2019 год.

Коммунальные службы и предприятия в Техасе в настоящее время в основном обращаются к ветровой и солнечной энергии, потому что это так дешево, а не из-за государственных предписаний. Техас действительно принял требования к возобновляемым источникам энергии еще в 1999 и 2005 годах, требуя, чтобы коммунальные предприятия добавили 10 000 мегаватт возобновляемой мощности к 2025 году. Но штат достиг этих целей десять лет назад, и с тех пор законодатели не обновляли закон.

Большая часть электроэнергии, производимой в Юте, производится из угля, но доля угля за последние несколько лет снизилась по мере увеличения доли природного газа.

Штат производит больше энергии, чем потребляет, и отправляет излишки в близлежащие штаты, такие как Калифорния. По крайней мере, одна электростанция в Юте переходит с угля на природный газ, чтобы соответствовать более строгим экологическим нормам Калифорнии.

В 2016 году солнечная энергия стала крупнейшим источником возобновляемой энергии в штате, а в прошлом году ее доля снова увеличилась. Юта поставила перед коммунальными предприятиями цель к 2025 году получать 20 процентов продаваемой ими электроэнергии из возобновляемых источников.

Большая часть электроэнергии, вырабатываемой в Вермонте, поступала от атомной энергетики до 2014 года, когда была закрыта единственная атомная электростанция в штате Vermont Yankee. С тех пор практически вся электроэнергия, производимая в штате, поступает из возобновляемых источников, включая гидроэнергетику, биомассу, ветер и солнечную энергию.

Но Вермонт также теперь производит меньше электроэнергии в целом, чем до закрытия атомной электростанции. В прошлом году государство произвело достаточно электроэнергии только в пределах своих границ, чтобы удовлетворить две пятых спроса.Остальное поступило за счет импорта, в основном из близлежащих штатов Новой Англии и Канады. (Импорт не показан на диаграмме выше.)

Цель Вермонта в области возобновляемых источников энергии требует, чтобы к 2032 году 75 процентов электроэнергии, продаваемой в штате, поступали из возобновляемых источников, в том числе 10 процентов из небольших источников в штате.

Уголь был основным источником электроэнергии, производимой в Вирджинии в период с 2001 по 2008 год, но с тех пор его доля снизилась. К 2015 году природный газ стал крупнейшим источником электроэнергии в штате в результате общенационального бума гидроразрыва пласта или гидроразрыва пласта, который привел к избытку дешевого газа.Атомная генерация обеспечивала в среднем чуть более одной трети электроэнергии Вирджинии за последние два десятилетия.

В апреле Вирджиния одобрила новый закон, требующий, чтобы две крупнейшие коммунальные службы штата получали всю электроэнергию из безуглеродных источников к 2050 году. В соответствии с этим законом почти все угольные электростанции Вирджинии должны быть закрыты к 2024 году. До принятия законопроекта , у государства были только добровольные требования к возобновляемой энергии.

Вирджиния потребляет больше электроэнергии, чем производит, поэтому она получает дополнительную энергию из близлежащих штатов через региональную сеть Средней Атлантики.

Вашингтон является крупнейшим в стране производителем гидроэлектроэнергии, которая доминирует в структуре производства электроэнергии в штате с 2001 года. Доля выработки гидроэлектроэнергии колеблется в зависимости от количества осадков из года в год, при этом большую часть остальных приходится на уголь, ядерную энергию, природный газ и энергию ветра. .

Вашингтон производит больше электроэнергии, чем потребляет, и экспортирует электроэнергию в Канаду и другие западные государства. В 2019 году штат потребовал от своих электроэнергетических компаний полностью отказаться от электроэнергии, вырабатываемой на ископаемом топливе, к 2045 году.

Уголь доминирует в энергетическом балансе Западной Вирджинии, поставляя более 90 процентов электроэнергии, производимой в штате каждый год в течение почти двух десятилетий. В период с 2001 по 2019 год гидроэнергетика обеспечивала небольшую и относительно стабильную часть выработки электроэнергии в штате, в то время как доля ветра и природного газа в последние годы увеличилась. На каждый из этих источников приходилось около 3 процентов электроэнергии, произведенной в штате в прошлом году.

После многих лет лоббирования со стороны консервативных групп Западная Вирджиния стала первым штатом, отменившим стандарт возобновляемой энергии в 2015 году.Закон требовал бы, чтобы к 2025 году коммунальные предприятия получали 25 процентов своей электроэнергии из альтернативных и возобновляемых источников энергии. время, когда национальный рынок угля находился в упадке.

Западная Вирджиния производит больше электроэнергии, чем потребляет, и поставляет немногим менее половины своей мощности в другие среднеатлантические штаты через общую региональную сеть.(Экспорт не показан на диаграмме выше.)

Основная часть электроэнергии, производимой в Висконсине, по-прежнему производится из угля, но в последние годы доля природного газа быстро увеличилась. Энергия ветра закрепилась в штате более десяти лет назад, но остается относительно небольшим игроком в электроэнергетике штата.

В 2019 году губернатор Тони Эверс, демократ, поставил цель по всему штату перейти на 100-процентную чистую энергию к 2050 году и создал новое государственное управление для управления переходом.Однако это предложение столкнулось с оппозицией в законодательном органе, возглавляемом республиканцами.

Подавляющее большинство электроэнергии, вырабатываемой в Вайоминге, вырабатывается из угля, но за последнее десятилетие ветровая энергетика получила широкое распространение. В прошлом году ветер обеспечил почти одну десятую электроэнергии, произведенной в штате.

Из-за своего небольшого населения Вайоминг производит гораздо больше энергии, чем потребляет, и отправляет почти 60 процентов в близлежащие штаты.

Как ваш штат производит электричество?

Этот интерактив был обновлен в 2020 году.Посетите эту страницу, чтобы увидеть последние новости.

В целом, ископаемые виды топлива по-прежнему преобладают в производстве электроэнергии в Соединенных Штатах. Но переход с угля на природный газ помог снизить выбросы углекислого газа и другие загрязнения. В прошлом году уголь был основным источником электроэнергии для 18 штатов по сравнению с 32 штатами в 2001 году.

Основной источник производства электроэнергии в каждом штате

Но эксперты предупреждают, что одного перехода на природный газ недостаточно, чтобы ограничить выбросы и избежать опасного глобального потепления.

«Переход с угля на газ — это хорошо в краткосрочной перспективе, но это не решение в долгосрочной перспективе», — сказал Северин Боренштейн, директор Института энергетики Калифорнийского университета в Школе бизнеса им. Хааса в Беркли. «Газ по-прежнему производит много парниковых газов. Мы не можем оставаться на газу и решать эту проблему. В конечном итоге нам придется перейти к источникам с гораздо более низким или нулевым уровнем выбросов углерода».

Мы составили схему производства электроэнергии в каждом штате в период с 2001 по 2017 год, используя данные Управления энергетической информации США.Прокрутите вниз или перейдите к своему состоянию:

В 2001 году уголь обеспечивал более половины электроэнергии, производимой в Алабаме, но с тех пор несколько стареющих угольных электростанций штата закрылись или перешли на сжигание более дешевого природного газа. К 2017 году основным источником электроэнергии в штате был природный газ, за ​​которым следовала атомная энергия. Уголь занял третье место, обеспечивая чуть менее четверти производства электроэнергии в штате.

Алабама производит больше электроэнергии, чем потребляет, и обычно отправляет около одной трети своей продукции в близлежащие штаты.

Природный газ является основным источником выработки электроэнергии на Аляске с 2001 года, но за это время доля гидроэлектроэнергии увеличилась. Государство стремится к 2025 году получать 50 процентов своей электроэнергии из возобновляемых источников, но эта цель является добровольной и не имеет юридической силы.

У Аляски есть собственная электрическая сеть, а это означает, что «независимо от того, сколько электроэнергии там производится, столько они и потребляют», — сказал Гленн МакГрат, аналитик энергосистем Управления энергетической информации.«Это настолько изолировано, насколько это возможно».

Многие сельские общины Аляски вообще не подключены к основной сети и используют дизельные генераторы для получения электроэнергии.

Уголь

был основным источником выработки электроэнергии в Аризоне до 2016 года, когда природный газ стал производить больше энергии. В прошлом году природный газ, атомная энергетика и уголь обеспечивали чуть менее трети электроэнергии, производимой в штате.

Но ожидается дальнейшее снижение угольной энергетики. Государственная электростанция Навахо, крупнейшая угольная электростанция на Западе, должна быть закрыта в 2019 году, в основном из-за конкуренции со стороны более дешевого природного газа.

Аризона снабжает электричеством весь Юго-Запад. Штат обладает богатым солнечным потенциалом, и к 2025 году коммунальные предприятия должны будут получать 15 процентов своей электроэнергии из возобновляемых источников.В ноябре избиратели отклонили инициативу голосования, которая должна была повысить эту цель до более амбициозных 50 процентов к 2035 году.

Уголь был основным источником электроэнергии, производимой в Арканзасе каждый год в период с 2001 по 2017 год, но его доля выработки за это время постепенно снижалась. Природный газ, тем временем, вырос, чтобы обеспечить более четверти электроэнергии, произведенной в штате в прошлом году, по сравнению с 6 процентами в 2001 году.

Арканзас производит больше электроэнергии, чем потребляет, и экспортирует электроэнергию в близлежащие штаты.

Природный газ является основным источником электроэнергии в Калифорнии с 2001 года. Но половина электроэнергии, произведенной в штате в прошлом году, была получена из возобновляемых источников, включая солнечную, ветровую, геотермальную и гидроэлектроэнергию.

Гидроэлектроэнергия, которая сократилась в период с 2014 по 2015 год из-за засухи, снова выросла в прошлом году, чтобы обеспечить наибольшую долю возобновляемой генерации в штате. Солнечная энергия быстро росла за последние пять лет, в основном из-за государственной политики, такой как агрессивный стандарт возобновляемой энергии.В этом году Калифорния обязалась к 2045 году получать всю электроэнергию из источников с нулевым выбросом углерода.

В прошлом году около четверти потребляемой в штате электроэнергии, в том числе часть электроэнергии, вырабатываемой на угле, поступала из-за пределов его границ. (Импорт не показан на графике выше.) Но Калифорния планирует прекратить покупать электроэнергию на угольных электростанциях в Юте и других штатах.

Подавляющее большинство электроэнергии, вырабатываемой в Колорадо, поступает из источников ископаемого топлива: примерно половина из угля и четверть из природного газа.Но за последнее десятилетие ветроэнергетика росла. В прошлом году ветер был третьим по величине источником электроэнергии, производимой в Колорадо, на его долю приходилось почти пятая часть выработки электроэнергии в штате.

Колорадо установил требование, согласно которому к 2020 году 30 процентов электроэнергии, продаваемой коммунальными предприятиями, должно поступать из возобновляемых источников.

Атомная энергетика и природный газ обеспечивали большую часть электроэнергии, вырабатываемой в Коннектикуте в период с 2001 по 2017 год.В то время мощность природного газа росла, и в прошлом году на ее долю приходилось почти половина производства электроэнергии в штате по сравнению с 13 процентами почти два десятилетия назад. Угольная генерация в штате почти полностью исчезла, а последнюю оставшуюся угольную электростанцию ​​Коннектикута, Бриджпорт-Харбор, планируется закрыть в 2021 году.

Пять процентов электроэнергии, произведенной в Коннектикуте, было получено из возобновляемых источников в 2017 году. В этом году штат расширил свой стандарт возобновляемой энергии, требуя, чтобы коммунальные предприятия к 2030 году получали 40 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников.

Природный газ заменил уголь в качестве основного источника электроэнергии, производимой в Делавэре в 2010 году, и с тех пор доля угля в выработке энергии резко сократилась. Уголь обеспечивал 70 процентов электроэнергии, производимой в Делавэре в 2008 году, пиковом году, но чуть менее 5 процентов к 2017 году. Доля природного газа за тот же период увеличилась более чем в четыре раза.

Частично благодаря этому сдвигу выбросы углекислого газа в электроэнергетическом секторе штата за последнее десятилетие сократились.Делавэр потребует, чтобы коммунальные предприятия к 2025 году получали 25% своей электроэнергии из возобновляемых источников.

Электроэнергия, производимая в штате, поставляет «от двух третей до трех четвертей электроэнергии, продаваемой потребителям в штате Делавэр», по данным EIA. Остальное поступает из соседних государств по региональной сети. (Импорт не показан на диаграмме выше.)

В 2001 году более трети электроэнергии, производимой во Флориде, приходилось на сжигание угля, но два года спустя природный газ превзошел уголь в качестве основного источника выработки энергии в штате и продолжал увеличивать свою долю в структуре энергопотребления штата.К 2017 году природный газ составлял две трети производства электроэнергии во Флориде, что более чем вдвое превышает средний показатель по стране.

Флорида является вторым по величине производителем электроэнергии в стране после Техаса, но по-прежнему зависит от импорта из соседних штатов для удовлетворения потребительского спроса.

Несмотря на свое прозвище, Солнечный штат производит очень мало энергии за счет солнечной энергии и не имеет потребности в возобновляемых источниках энергии.

Уголь обеспечивал большую часть выработки электроэнергии в Грузии в 2000-х годах, но снизился по мере увеличения мощности природного газа. В последние годы доля угольной генерации резко сократилась, поскольку несколько стареющих угольных электростанций были выведены из эксплуатации.

Коммунальные предприятия штата находятся в процессе строительства двух новых ядерных реакторов, единственных новых ядерных проектов, строящихся в стране.

Около десятой части производства электроэнергии в Грузии в прошлом году приходилось на возобновляемые источники, в основном биомассу и гидроэлектроэнергию. Но солнечная энергия быстро растет в штате. Джорджия не предъявляет никаких требований к возобновляемым источникам энергии в масштабах штата, но город Атланта разрабатывает план получения всей электроэнергии из возобновляемых источников к 2035 году.

В последние два десятилетия Гавайи в значительной степени зависят от импортируемой нефти для производства электроэнергии.Но у штата есть смелый план по производству всей энергии из местных возобновляемых источников к 2045 году.

В прошлом году на возобновляемые источники энергии приходилось четверть электроэнергии, производимой на Гавайях, по сравнению с менее чем десятой частью в 2001 году. За последние пять лет в штате быстро росла солнечная энергия, в основном из небольших панелей на крышах.

Гидроэнергетика долгое время доминировала в структуре производства электроэнергии в Айдахо.Но в последние годы его доля снизилась, отчасти из-за засухи. Штат по-прежнему производит большую часть своей электроэнергии из возобновляемых источников, при этом в прошлом году на долю ветра приходилось 15 процентов выработки в штате, по сравнению с менее чем 2 процентами десять лет назад. Солнечная энергия, хотя и по-прежнему составляет небольшую долю, резко увеличилась в период с 2016 по 2017 год.

Айдахо в значительной степени зависит от импорта из штата для удовлетворения спроса на электроэнергию. В то время как уголь составляет лишь часть выработки в штате, в конце концов, «около одной трети электроэнергии, потребляемой в Айдахо, приходится на угольные электростанции, расположенные в других штатах», согласно E.Я. (Данные импорта не показаны на диаграмме выше.)

Атомная энергетика — основной источник электроэнергии в Иллинойсе. Он обеспечивал более половины электроэнергии, производимой в штате в течение почти двух десятилетий. Уголь также является важным источником энергии для государства — даже дважды за последнее десятилетие, в 2004 и 2008 годах, превосходя атомную энергетику в качестве основного источника выработки электроэнергии, — но его доля в последние годы снизилась, поскольку старые электростанции были выведены из эксплуатации или переведены на сжигание природного газа.Как природный газ, так и энергия ветра увеличились за последнее десятилетие.

Иллинойс производит «значительно больше» электроэнергии, чем потребляет в штате, по данным EIA. Он отправляет излишки в штаты Средней Атлантики и Среднего Запада через региональные сети.

Уголь вырабатывал большую часть электроэнергии, производимой в Индиане в течение почти двух десятилетий, но в последние годы на смену пришли природный газ и энергия ветра.В 2001 году на природный газ приходилось 2 процента производства электроэнергии в штате, но в 2017 году он вырос до почти 20 процентов.

Законодательное собрание Индианы в 2011 году установило добровольный стандарт экологически чистой энергии, который побуждает электроэнергетику получать все больше энергии из возобновляемых и других альтернативных источников энергии. Однако, по данным EIA, в прошлом году в программе не участвовало ни одно коммунальное предприятие штата Индиана.

За последнее десятилетие в Айове взорвалась энергия ветра.В 2001 году ветер обеспечивал всего 1 процент электроэнергии, производимой в штате, но к 2017 году этот показатель вырос почти до 40 процентов. Айова по-прежнему производит почти половину своей электроэнергии из угля, но с 2010 года доля угля снизилась.

В абсолютном выражении штат, один из самых ветреных в стране, в прошлом году был третьим по величине производителем ветровой энергии после Техаса и Оклахомы. Айова производит больше энергии, чем потребляет, отправляя излишки в близлежащие штаты.

Айова в 1983 году стала первым штатом, принявшим закон, обязывающий коммунальные предприятия получать некоторое количество электроэнергии из возобновляемых источников, но штат не обновил свои стандарты.

Как и во многих штатах Великих равнин, в Канзасе за последнее десятилетие наблюдался значительный рост использования энергии ветра. Доля электроэнергии, вырабатываемой с помощью ветра, увеличилась в пять раз с 2010 года.

В 2009 году Законодательное собрание Канзаса приняло стандарт возобновляемой энергии, согласно которому коммунальные предприятия должны получать все большее количество электроэнергии из ветра, солнца и других возобновляемых источников — до 20 процентов к 2020 году.Но губернатор Сэм Браунбэк и законодатели штата смягчили меру в 2015 году, сделав цель добровольной, после того как консервативные группы, связанные с промышленным конгломератом Koch Industries, выступили против более строгого стандарта.

Уголь по-прежнему обеспечивает большую часть электроэнергии, производимой в Кентукки, штате, где долгое время добывали уголь. В прошлом году уголь был источником почти 80 процентов выработки электроэнергии в штате, но на протяжении большей части последних двух десятилетий эта цифра колебалась ближе к 90 процентам.

С 2014 года ряд старых угольных электростанций Кентукки были закрыты или переведены на сжигание природного газа, который в 2017 году обеспечивал 13 процентов производства электроэнергии в штате.

Природный газ обеспечивает основную часть выработки электроэнергии в Луизиане, которая входит в пятерку крупнейших производителей природного газа в стране. В прошлом году на газ приходилось 60 процентов электроэнергии, производимой в штате, по сравнению с 46 процентами в 2001 году.За это время угольная генерация сократилась, опустившись со второго по величине источника энергии в штате на третье место.

Луизиана также получает электроэнергию из соседних штатов. (Импорт не указан в таблице выше.)

Мэн «лидирует в Новой Англии по выработке ветровой энергии», согласно EIA. В прошлом году ветер поставлял пятую часть электроэнергии, производимой в штате.Гидроэлектроэнергия и энергия биомассы, получаемая от сжигания древесины и других органических материалов, были следующими по величине источниками генерации.

С 2000 года государство требует, чтобы поставщики электроэнергии получали 30 процентов электроэнергии, которую они продают потребителям, из существующих возобновляемых источников. Ожидалось, что в 2017 году коммунальные предприятия получат 10 процентов от новых возобновляемых источников энергии. У государства есть отдельные цели по развитию ветроэнергетики.

Общее количество электроэнергии, вырабатываемой в штате Мэн, снизилось с 2010 года, особенно за счет энергии природного газа, и штат все больше полагался на импорт энергии из Канады.(Импорт не включен в приведенную выше таблицу.)

Угольная энергетика в Мэриленде находится в упадке в течение десяти лет, и с 2012 года она обеспечивает менее половины электроэнергии, производимой в штате. За это время доля электроэнергии, вырабатываемой за счет ядерной энергии и природного газа, увеличилась.

Производство солнечной энергии, хотя и невелико, за последние несколько лет быстро росло.С 2004 г. государство требует, чтобы все большее количество электроэнергии, продаваемой коммунальными предприятиями, поступало из возобновляемых источников, с целью к 2020 г. достичь 25%

.

Мэриленд потребляет больше электроэнергии, чем производит, и импортирует почти половину своей электроэнергии из других штатов Средней Атлантики через региональную сеть. (Импорт не включен в приведенную выше таблицу.)

За последние два десятилетия доля природного газа в производстве электроэнергии в Массачусетсе увеличилась более чем вдвое.Производство угля и нефти резко сократилось за тот же период, а в прошлом году закрылась последняя крупная угольная электростанция в штате. С 2013 года в штате резко увеличилось количество электроэнергии, вырабатываемой из солнечной энергии.

В этом году государство ужесточило требование к коммунальным предприятиям продавать электроэнергию из возобновляемых источников, повысив требование до 35 процентов от общего объема продаж к 2030 году. Новое законодательство также поощряет развитие оффшорной ветроэнергетики.

Массачусетс потребляет больше электроэнергии, чем производит в штате, а остальное получает от близлежащих штатов через региональную сеть. (Импорт не показан на диаграмме выше).

Уголь

оставался основным источником электроэнергии, производимой в Мичигане в прошлом году, но его доля в выработке снизилась с чуть более 60 процентов в 2001 году до чуть менее 40 процентов в 2017 году. За тот же период доля природного газа почти удвоилась в его выработке.Ветер, основной возобновляемый источник энергии в Мичигане, обеспечил почти 5 процентов электроэнергии, произведенной в штате в прошлом году.

В 2008 году штат Мичиган потребовал, чтобы коммунальные предприятия и другие поставщики электроэнергии к 2015 году получали не менее 10 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников. Эта цель была достигнута, а к 2021 году эта доля была увеличена до 15 процентов.

Уголь был основным источником электроэнергии, вырабатываемой в Миннесоте в течение последних двух десятилетий.Но в период с 2001 по 2017 год доля угольной генерации снизилась по мере роста производства энергии ветра и природного газа.

Государство требует, чтобы коммунальные предприятия постепенно продавали все большее количество электроэнергии из возобновляемых источников, с требованием 25 процентов от общего объема продаж к 2025 году.

Природный газ обеспечил более трех четвертей электроэнергии, вырабатываемой в Миссисипи в прошлом году. Уголь, который когда-то был основным источником электроэнергии в штате, за последнее десятилетие сократился, уступив место более дешевому природному газу.В 2001 году уголь обеспечивал 36 процентов электроэнергии, производимой в штате, а в 2017 году — всего 8 процентов.

Структура производства электроэнергии в штате Миссури практически не изменилась за почти два десятилетия. Уголь обеспечивал подавляющее большинство электроэнергии, вырабатываемой в штате в период с 2001 по 2017 год, и за это время его количество сократилось лишь незначительно, поскольку старые угольные электростанции отключились или перешли на сжигание природного газа.

Миссури потребует, чтобы коммунальные предприятия к 2021 году получали не менее 15 процентов продаваемой ими электроэнергии из возобновляемых источников, в том числе небольшое количество из солнечной энергии.

Уголь был основным источником электроэнергии, производимой в Монтане в течение почти двух десятилетий, но его доля выработки снизилась с 70 процентов в 2001 году до чуть менее 50 процентов в прошлом году. Гидроэнергетика, второй по величине источник электроэнергии в штате, за это время увеличила свою долю почти до 40 процентов, а ветровая энергия выросла до 8 процентов от выработки электроэнергии в штате.

По данным Э.Я. Остальное государство отправляет своим западным соседям.

Уголь был основным источником электроэнергии, производимой в Небраске в течение почти двух десятилетий, но его доля в выработке немного снизилась в период с 2001 по 2017 год. Атомная энергетика обеспечивала в среднем 25 процентов выработки электроэнергии в штате в течение этого времени, но ее доля варьировалась от года к году. к году.

За последнее десятилетие доля ветра в общей выработке электроэнергии увеличилась, и в прошлом году на ее долю пришлось 15 процентов электроэнергии, произведенной в штате.По данным EIA, Небраска имеет потенциал для значительного увеличения ветровой энергии.

В 2005 году природный газ вытеснил уголь в качестве основного источника электроэнергии в Неваде. Крупнейшая в штате угольная электростанция, электростанция Мохаве, была отключена в конце того же года, что еще больше снизило роль угля в энергетическом балансе штата. С тех пор больше угольных генераторов в Неваде закрылось из-за конкуренции со стороны дешевого природного газа и законов штата, требующих развития возобновляемых источников энергии.

В прошлом году природный газ обеспечивал почти 70 процентов электроэнергии, производимой в штате, за ней следовала солнечная энергия, которая обеспечивала 12 процентов выработки электроэнергии в штате. До недавнего времени Невада требовала, чтобы к 2025 году 25 процентов электроэнергии, продаваемой коммунальными предприятиями штата, поступала из возобновляемых источников. В ноябре жители Невады проголосовали за повышение этого требования до 50 процентов к 2030 году.

Основная часть электроэнергии, вырабатываемой в Нью-Гэмпшире, поступает от атомной электростанции Сибрук, крупнейшего реактора в Новой Англии.Природный газ обеспечивает около пятой части электроэнергии, производимой в штате с начала 2000-х годов, когда начали работать две новые электростанции. Доля электроэнергии Нью-Гэмпшира, вырабатываемой из угля, за последние два десятилетия сократилась с 25 процентов в 2001 году до менее 2 процентов в 2017 году.

Штат требует, чтобы коммунальные предприятия к 2025 году получали 25 процентов электроэнергии, которую они продают клиентам, из возобновляемых источников. Двумя основными источниками возобновляемой энергии в штате являются биомасса, или энергия, получаемая от сжигания древесины и других органических веществ, и гидроэнергетика. власть.

Нью-Гэмпшир производит больше энергии, чем потребляет в штате, и отправляет около половины в соседние штаты через региональную электрическую сеть Новой Англии. (Экспорт не включен в приведенную выше таблицу.)

Атомная энергетика была основным источником электроэнергии в Нью-Джерси до недавнего времени, когда ее вытеснил природный газ. В прошлом году на природный газ приходилось почти половина выработки электроэнергии в штате, а на атомную энергию приходилось 45 процентов.Солнечная энергия обеспечивала 4 процента электроэнергии штата.

В этом году штат Нью-Джерси повысил свой стандарт возобновляемых источников энергии, требуя, чтобы к 2021 году 21 процент электроэнергии, продаваемой в штате, поступал из возобновляемых источников, при этом это требование увеличивается до 35 процентов к 2025 году и до 50 процентов к 2030 году. для дальнейшего сокращения выбросов углерода штат также принял закон о поддержке своих атомных электростанций, которые в настоящее время обеспечивают большую часть энергии с нулевым уровнем выбросов.

Государство получает часть потребляемой энергии через региональную сеть Средней Атлантики. (Импорт не включен в приведенную выше таблицу.)

Уголь

был основным источником электроэнергии в Нью-Мексико на протяжении почти двух десятилетий. Но с 2004 года производство угольной энергии сократилось «в ответ на ужесточение правил качества воздуха, более дешевый природный газ и решение Калифорнии в 2014 году прекратить закупать электроэнергию, вырабатываемую из угля» в соседних штатах, по данным E.Я.

Природный газ, ветер и солнечная энергия составляли немногим менее половины электроэнергии, произведенной в Нью-Мексико в прошлом году, по сравнению с 15 процентами двумя десятилетиями ранее. Штат потребует, чтобы коммунальные предприятия к 2020 году получали 20 процентов электроэнергии, которую они продают, из возобновляемых источников энергии. Нью-Мексико также стремится увеличить выработку из источников с нулевым выбросом углерода, поскольку он посылает значительное количество электроэнергии в Калифорнию, штат с одними из самых строгих политики в области возобновляемых источников энергии в стране.

Природный газ и ядерная энергетика обеспечивали большую часть электроэнергии, вырабатываемой в Нью-Йорке в течение почти двух десятилетий, и их доля увеличилась по мере сокращения использования угля в штате. За последнее десятилетие Нью-Йорк также производил около пятой части своей электроэнергии за счет гидроэнергетики, крупнейшего в штате источника возобновляемой энергии.

Штат потребует, чтобы к 2030 году коммунальные предприятия получали 50 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников, что является амбициозной целью и направлено на существенное сокращение выбросов парниковых газов.Ветровая и солнечная энергия составляют небольшую, но растущую часть производства электроэнергии в Нью-Йорке, вместе обеспечивая чуть более 4 процентов электроэнергии штата в прошлом году.

Нью-Йорк, как правило, потребляет больше энергии, чем производит, и импортирует часть электроэнергии из соседних штатов и Канады. (Импорт электроэнергии не включен в приведенную выше диаграмму.)

Уголь

обеспечивал большую часть производства электроэнергии в Северной Каролине в период с 2001 по 2011 год.Но в течение следующих шести лет почти 30 угольных установок в штате закрылись, и к 2017 году выработка угля упала ниже атомной и газовой. Производство природного газа увеличилось после национального бума гидроразрыва пласта в конце 2000-х годов и в 2016 году стало вторым по величине источником производства электроэнергии в штате.

Северная Каролина в настоящее время является единственным южным штатом со значительной солнечной генерацией. Уникальная реализация государством многолетнего федерального мандата, Закона о политике регулирования коммунальных предприятий 1978 года, способствовала росту использования солнечной энергии в коммунальных масштабах.Северная Каролина также установила требование, чтобы к 2021 году коммунальные предприятия получали 12,5% электроэнергии, которую они продают потребителям, из возобновляемых источников энергии.

Как и во многих штатах Великих равнин, ветровая энергетика в Северной Дакоте за последнее десятилетие получила широкое распространение. В прошлом году ветряная энергия вырабатывала более четверти электроэнергии, производимой в штате, по сравнению с менее чем 2 процентами десятью годами ранее.

В 2007 году Законодательное собрание Северной Дакоты поставило перед коммунальными предприятиями добровольную цель: к 2015 году получать 10 процентов электроэнергии, продаваемой потребителям, за счет возобновляемых или переработанных источников энергии.По мнению аналитиков, эта цель была достигнута и даже перевыполнена.

Северная Дакота производит больше электроэнергии, чем потребляет в штате, и примерно половина отправляется соседям. (Экспорт не указан в таблице выше.)

Уголь был основным источником электроэнергии, производимой в Огайо в течение почти двух десятилетий, но его доля выработки снижается с 2011 года, поскольку несколько угольных электростанций штата закрылись.За тот же период доля природного газа в структуре производства электроэнергии в Огайо увеличилась.

В настоящее время ветер является основным источником возобновляемой энергии в штате, хотя в прошлом году он обеспечил лишь около 1 процента электроэнергии, выработанной в Огайо. Однако государство хочет его расширить. К концу 2026 года коммунальные предприятия должны будут получать не менее 12,5% электроэнергии, которую они продают потребителям, из возобновляемых источников.

Большая часть электроэнергии, вырабатываемой в Оклахоме на протяжении большей части последних двух десятилетий, приходится на природный газ и уголь, которые часто конкурируют между собой за звание главного источника электроэнергии в штате.Но в 2016 году ветер превзошел уголь как второй по величине источник электроэнергии в штате.

В прошлом году штат был вторым после Техаса по общему производству электроэнергии с помощью ветра.

В 2010 году штат Оклахома потребовал, чтобы к 2015 году 15 процентов его генерирующих мощностей приходилось на возобновляемые источники. Он также определил природный газ как предпочтительный выбор для новых проектов, связанных с ископаемым топливом. К 2012 году штат превысил целевой показатель по возобновляемым источникам энергии.

Большая часть электроэнергии, производимой в Орегоне в любой данный год, поступает от гидроэлектроэнергии, но доля, производимая с помощью воды, колеблется в зависимости от количества осадков. Мощность природного газа обычно увеличивается в засушливые годы и снижается в годы с достаточным количеством гидроэлектроэнергии.

За последнее десятилетие энергия ветра стала третьим по величине источником электроэнергии в штате.Стремясь стимулировать использование возобновляемых источников энергии, не связанных с гидроэлектростанциями, штат Орегон потребует от своих крупнейших коммунальных предприятий к 2040 году получать 50 процентов электроэнергии, которую они продают, из новых возобновляемых источников энергии. Программа охватывает проекты, внедренные или модернизированные с 1995 года, т. старая гидроэнергетика.

Уголь обеспечивал большую часть электроэнергии, производимой в Пенсильвании до 2014 года, когда она впервые упала ниже ядерной.Доля угля в штате сократилась после бума гидроразрыва пласта в конце 2000-х годов, когда стареющие угольные электростанции закрылись из-за конкуренции со стороны более дешевого природного газа.

В прошлом году атомная энергетика была главным источником электроэнергии в Пенсильвании. Но природный газ оказывает экономическое давление и на атомные генераторы штата: один реактор должен быть остановлен в 2019 году. Группы, выступающие за ядерную энергетику, заявляя, что потеря этой безэмиссионной электроэнергии является плохой новостью для изменения климата, обратились за государственными субсидиями. для атомной энергетики.

Пенсильвания потребует, чтобы к 2021 году 18 процентов электроэнергии, которую коммунальные предприятия продают потребителям, приходилось на возобновляемые и альтернативные источники энергии, при этом не менее 0,5 процента приходилось на солнечную энергию. В прошлом году возобновляемые источники энергии составили около 5 процентов выработки электроэнергии в штате.

Пенсильвания является третьим по величине производителем электроэнергии в стране после Техаса и Флориды. Штат является крупным поставщиком энергии в Среднеатлантический регион.

В производстве электроэнергии в Род-Айленде преобладает природный газ, но энергия ветра и солнца, хотя и остается небольшой, в последние годы быстро растет.

Род-Айленд потребует, чтобы к 2035 году поставщики электроэнергии получали почти две пятых электроэнергии, которую они продают потребителям, из возобновляемых источников. Штат потребляет больше электроэнергии, чем производит, а остальное получает от соседних штатов.(Импорт не включен в приведенную выше таблицу.)

Большая часть электроэнергии, вырабатываемой в Южной Каролине, приходится на атомную энергетику, а уголь и природный газ занимают второе и третье места соответственно. Доля угля за последнее десятилетие снизилась по мере роста производства энергии из природного газа.

Южная Каролина производит больше энергии, чем потребляет, и отправляет излишки в соседние штаты.

Гидроэнергетика обеспечивала большую часть электроэнергии, вырабатываемой в Южной Дакоте на протяжении большей части последних двух десятилетий, но в течение трех лет: 2001, 2004 и 2008 гг. производство электроэнергии на угле превышало производство электроэнергии на гидроэлектростанциях. увеличилась доля энергии ветра.

В прошлом году ветер был вторым по величине источником электроэнергии, производимой в Южной Дакоте, на его долю приходилось почти треть производства электроэнергии в штате.

Южная Дакота экспортирует электроэнергию в штаты центральной и западной части США.

Уголь поставлял большую часть электроэнергии, произведенной в Теннесси в период с 2001 по 2016 год, но его доля выработки начала снижаться около десяти лет назад, поскольку доля электроэнергии, производимой на природном газе, увеличилась. В прошлом году угольная генерация впервые почти за два десятилетия опустилась ниже ядерной.

Теннесси потребляет больше энергии, чем производит, и восполняет дефицит за счет электроэнергии из близлежащих штатов.(Импорт не включен в приведенную выше таблицу.)

Техас производит больше электроэнергии, чем любой другой штат, и с 2001 года природный газ является основным источником выработки электроэнергии, а уголь занимает второе место. Но доля угольной генерации снизилась по мере роста ветровой энергии. В 2014 году ветер обогнал атомную энергетику и стал третьим по величине источником электроэнергии в штате. Техас производит больше энергии от ветра, чем любой другой штат, а Оклахома и Айова занимают второе и третье места.

В 1999 году Техас принял требование к возобновляемым источникам энергии, требуя от штата установить 10 000 мегаватт мощностей возобновляемых источников энергии к 2025 году. Эта цель уже достигнута.

Большая часть электроэнергии, производимой в штате Юта, производится из угля, но доля угля за последние несколько лет снизилась по мере увеличения доли природного газа.

Штат производит больше энергии, чем потребляет, и отправляет излишки в близлежащие штаты, такие как Калифорния.По крайней мере, одна электростанция в Юте переходит с угля на природный газ, чтобы соответствовать более строгим экологическим нормам Калифорнии.

В 2016 году солнечная энергия стала крупнейшим источником возобновляемой энергии в штате, а в прошлом году ее доля снова увеличилась. Юта поставила перед коммунальными предприятиями цель получать 20 процентов продаваемой ими электроэнергии из возобновляемых источников к 2025 году.

Большая часть электроэнергии, вырабатываемой в Вермонте, производилась на атомной энергетике до 2014 года, когда была закрыта единственная атомная электростанция в штате Vermont Yankee.С тех пор почти вся электроэнергия, производимая в штате, поступает из возобновляемых источников, включая гидроэнергетику, биомассу, ветер и солнечную энергию. Но абсолютная генерирующая мощность Вермонта существенно снизилась.

Вермонт импортирует большую часть своей электроэнергии из близлежащих штатов и Канады. По данным EIA, в прошлом году собственная генерация штата «обеспечивала лишь около двух пятых электроэнергии, потребляемой в Вермонте».

Амбициозная цель Вермонта в области возобновляемых источников энергии требует, чтобы к 2032 году 75 процентов электроэнергии, продаваемой в штате, поступали из возобновляемых источников, включая 10 процентов из небольших источников в штате.

Уголь был основным источником электроэнергии, производимой в Вирджинии в период с 2001 по 2008 год, когда его доля начала снижаться. Энергия природного газа увеличилась в штате после национального бума гидроразрыва пласта в конце 2000-х годов и стала основным источником выработки электроэнергии в штате в 2015 году. Атомная генерация в среднем обеспечивала чуть более трети электроэнергии Вирджинии за последние два десятилетия. .

Вирджиния потребляет больше электроэнергии, чем вырабатывает, поэтому получает дополнительную энергию из соседних штатов через региональную сеть Средней Атлантики.Штат поставил перед коммунальными предприятиями добровольную цель получать к 2025 году 15 процентов продаваемой ими электроэнергии из возобновляемых источников.

Гидроэнергетика поставляет большую часть электроэнергии, вырабатываемой в Вашингтоне каждый год с 2001 года, но ее доля в выработке электроэнергии в штате колеблется в зависимости от осадков. Уголь, природный газ, ядерная энергия и энергия ветра чередовались как второй по величине источник электроэнергии, производимый в штате на протяжении большей части последних двух десятилетий.

Вашингтон производит больше электроэнергии, чем потребляет, и экспортирует электроэнергию в Канаду и другие западные государства. Штат потребует, чтобы к 2020 году его более крупные коммунальные предприятия получали 15% продаж электроэнергии из новых возобновляемых источников.

Уголь

доминирует в структуре производства электроэнергии в Западной Вирджинии, поставляя более 90 процентов электроэнергии, производимой в штате каждый год в течение почти двух десятилетий.В период с 2001 по 2017 год гидроэнергетика обеспечивала небольшую часть выработки в штате. Доля ветра и природного газа в последние годы увеличилась, но на каждый из этих источников приходилось лишь около 2 процентов электроэнергии, вырабатываемой в штате в прошлом году.

После нескольких лет лоббирования со стороны консервативных групп Западная Вирджиния стала первым штатом, отменившим свой стандарт возобновляемой энергии в 2015 году. Закон требовал, чтобы коммунальные предприятия к 2025 году получали 25 процентов своей электроэнергии из альтернативных и возобновляемых источников энергии.Противники стандарта заявили, что он наносит ущерб рабочим местам в угольной отрасли и повышает тарифы на электроэнергию, в то время как сторонники говорят, что он поможет диверсифицировать электроэнергетический сектор штата в то время, когда национальный рынок угля находится в упадке.

Западная Вирджиния производит больше электроэнергии, чем потребляет, и поставляет около половины своей электроэнергии в другие среднеатлантические штаты через общую региональную сеть. (Экспорт не показан на диаграмме выше.)

Большая часть электроэнергии, производимой в Висконсине, производится из угля, но за последние три года выработка природного газа увеличилась.Энергия ветра закрепилась в штате десять лет назад и постепенно увеличивала свою долю производства электроэнергии.

Висконсин потребовал, чтобы его коммунальные предприятия к концу 2015 года получали 10 процентов электроэнергии, продаваемой в штате, из возобновляемых источников. Эта цель была превышена на два года раньше запланированного срока.

Подавляющее большинство электроэнергии, вырабатываемой в Вайоминге, вырабатывается из угля, но за последнее десятилетие ветровая энергетика получила широкое распространение.В прошлом году ветер обеспечил почти десятую часть электроэнергии, производимой в штате.

Из-за небольшой численности населения Вайоминг производит гораздо больше энергии, чем потребляет, и отправляет около 60 процентов энергии в близлежащие штаты.

Откуда у нас электричество?

Электричество необходимо для современной жизни, однако почти миллиард человек не имеет к нему доступа. Такие вызовы, как изменение климата, загрязнение и разрушение окружающей среды, требуют от нас изменения способов производства электроэнергии.

За последнее столетие основными источниками энергии, используемыми для выработки электроэнергии, были ископаемое топливо, гидроэлектроэнергия, а с 1950-х годов – ядерная энергия. Несмотря на значительный рост возобновляемых источников энергии за последние несколько десятилетий, ископаемое топливо остается доминирующим во всем мире. Их использование для производства электроэнергии продолжает расти как в абсолютном, так и в относительном выражении: в 2017 году на ископаемое топливо было выработано 64,5% мировой электроэнергии по сравнению с 61,9% в 1990 году.

Доступ к надежному электричеству жизненно важен для благополучия человека. В настоящее время каждый седьмой человек в мире не имеет доступа к электричеству. Таким образом, спрос на электроэнергию будет продолжать расти. В то же время выбросы парниковых газов должны резко сократиться, если мы хотим смягчить последствия изменения климата, и мы должны перейти на более чистые источники энергии, чтобы уменьшить загрязнение воздуха. Это, вероятно, потребует значительного увеличения использования всех низкоуглеродных источников энергии, важной частью которых является ядерная энергия.

Для достижения устойчивого мира необходимо будет обезуглерожить все сектора экономики, включая транспорт, теплоснабжение и промышленность.Электричество обеспечивает средства для использования источников энергии с низким содержанием углерода, и поэтому повсеместная электрификация рассматривается как ключевой инструмент обезуглероживания секторов, традиционно работающих на ископаемом топливе. По мере роста конечного использования электроэнергии и распространения ее преимуществ на всех людей спрос значительно возрастет.

Уголь, газ и нефть

Электростанции, работающие на ископаемом топливе, сжигают уголь или нефть для выработки тепла, которое, в свою очередь, используется для выработки пара для привода турбин, вырабатывающих электроэнергию.На газовых электростанциях горячие газы приводят в действие турбину для выработки электроэнергии, тогда как на газотурбинной установке с комбинированным циклом (ПГУ) также используется парогенератор для увеличения количества производимой электроэнергии. В 2017 году ископаемое топливо произвело 64,5% электроэнергии во всем мире.

Эти электростанции надежно вырабатывают электроэнергию в течение длительного периода времени и, как правило, дешевы в строительстве. Однако при сжигании топлива на основе углерода выделяется большое количество углекислого газа, что приводит к изменению климата. Эти растения также производят другие загрязняющие вещества, такие как оксиды серы и азота, которые вызывают кислотные дожди.

Электростанция Cottam в Великобритании, которая использует как уголь, так и газ для выработки электроэнергии (Изображение: EDF Energy)

Сжигание ископаемого топлива для получения энергии вызывает значительное число смертей из-за загрязнения воздуха. Например, по оценкам, только в Китае 670 000 человек ежегодно умирают преждевременно из-за использования угля.

Для установок, работающих на ископаемом топливе, требуется очень большое количество угля, нефти или газа. Во многих случаях эти виды топлива необходимо транспортировать на большие расстояния, что может привести к потенциальным проблемам с поставками.Цены на топливо исторически были неустойчивыми и могут резко расти в периоды дефицита или геополитической нестабильности, что может привести к нестабильной стоимости производства и более высоким потребительским ценам.

Гидроэнергетика

Большинство крупных гидроэлектростанций вырабатывают электроэнергию, храня воду в огромных резервуарах за плотинами. Вода из водохранилищ проходит через турбины для выработки электроэнергии. Плотины гидроэлектростанций могут генерировать большое количество низкоуглеродной электроэнергии, но количество мест, подходящих для новых крупномасштабных плотин, ограничено.Гидроэлектроэнергия также может производиться на русловых электростанциях, но большинство рек, подходящих для этого, уже освоены.

Плотина «Три ущелья» в Китае — крупнейшая в мире гидроэлектростанция и крупнейшая в мире электростанция (Изображение: Le Grand Portage, CC BY-SA 2.0)

В 2017 году на долю гидроэнергетики приходилось 16% мирового производства электроэнергии.

Затопление водохранилищ за плотинами и замедление течения речной системы под плотиной также может оказать серьезное воздействие на окружающую среду и местное население.Например, при строительстве крупнейшей в мире ГЭС «Три ущелья» в Китае было перемещено около 1,3 млн человек.
По числу погибших от несчастных случаев гидроэнергетика является самым смертоносным источником энергии. Аварией с наибольшим числом погибших стало обрушение в 1975 году плотины Баньцяо в китайской провинции Хэнань, в результате которого, по официальным оценкам, погибло 171 000 человек.

Атомная энергетика

Атомные энергетические реакторы используют тепло, выделяемое при расщеплении атомов, для производства пара, приводящего в действие турбину.В процессе деления не образуются парниковые газы, и в течение всего ядерного жизненного цикла образуется лишь очень небольшое количество. Атомная энергетика является экологически чистой формой производства электроэнергии и не способствует загрязнению воздуха. В 2018 году атомная энергетика произвела 10,5% мировой электроэнергии.

Атомная электростанция Палуэль на севере Франции, одна из крупнейших в мире атомных электростанций (Изображение: Areva)

Атомные электростанции, как и электростанции, работающие на ископаемом топливе, очень надежны и могут работать в течение многих месяцев без перерыва, обеспечивая большое количество чистой электроэнергии, независимо от времени суток, погоды или сезона.Большинство атомных электростанций могут работать не менее 60 лет, и это способствует тому, что атомная электроэнергия является наиболее доступной по сравнению с другими производителями электроэнергии.

Ядерное топливо можно использовать в реакторе в течение нескольких лет благодаря огромному количеству энергии, содержащейся в уране. Мощность одного килограмма урана примерно такая же, как у 1 тонны угля.

В результате образуется соответственно небольшое количество отходов. В среднем реактор, обеспечивающий потребность человека в электроэнергии в течение года, создает около 500 граммов отходов — это поместилось бы в банке из-под газировки.Всего 5 граммов из этого количества используется ядерного топлива — эквивалент листа бумаги. Существует несколько стратегий обращения с отработанным топливом, таких как прямая утилизация или переработка в реакторах для производства электроэнергии с более низким уровнем выбросов углерода.

Ветровая и солнечная энергия

Возобновляемые источники энергии, такие как ветер, солнечная энергия и малые гидроэлектростанции, производят электроэнергию с низким уровнем выбросов парниковых газов на протяжении всего их жизненного цикла. В 2017 году ветровая и солнечная энергия произвела 4,4% и 1.3%, соответственно, мировой электроэнергии. Они не производят электричество предсказуемо или постоянно из-за присущей им зависимости от погоды. Производство электроэнергии ветряными турбинами зависит от скорости ветра, и если ветер слишком слабый или слишком сильный, электричество вообще не производится. Мощность солнечных панелей зависит от силы солнечного света, которая зависит от ряда различных факторов, таких как время суток и количество облачного покрова (а также количество пыли на панелях).

Еще одна проблема заключается в том, что может не хватить места или желания населения разместить огромное количество турбин или панелей, необходимых для производства достаточного количества электроэнергии. Это связано с тем, что энергия ветра или солнца является рассеянной, а это означает, что для производства значительного количества электроэнергии требуются очень значительные площади земли.

Поскольку электроэнергию нелегко хранить, возобновляемые источники энергии должны быть подкреплены другими формами производства электроэнергии.Самые большие батареи не могут работать в течение нескольких дней, не говоря уже о неделях, которые потребовались бы для резервного копирования возобновляемых источников энергии, чтобы обеспечить круглосуточную подачу электроэнергии. Чтобы обеспечить стабильную поставку электроэнергии, газовые станции все чаще предоставляют услуги резервного копирования электроэнергии из возобновляемых источников. Установки, работающие на природном газе, выделяют большое количество углекислого газа во время работы, а значительное количество метана часто выделяется при добыче и транспортировке газа, что способствует изменению климата.

Биомасса

Работа биомассы очень похожа на газовые и угольные электростанции. Вместо сжигания газа или угля завод работает на различных формах биомассы (например, на специально выращенных деревьях, древесной щепе, бытовых отходах или «биогазе»). В 2017 году биомасса произвела 2,3% мировой электроэнергии.

Электростанция Drax в Великобритании частично заменила уголь импортируемой биомассой в качестве топлива для производства электроэнергии (Изображение: Эндрю Вейл, CC BY-SA 2.0)

Производство биомассы может потребовать много энергии, как с точки зрения производства самой биомассы, так и с точки зрения транспортировки. Из-за этого требуемая энергия может быть больше, чем энергетическая ценность конечного топлива, а выбросы парниковых газов могут быть такими же высокими или даже больше, чем выбросы от эквивалентного ископаемого топлива. Кроме того, для поглощения выбрасываемого углекислого газа может потребоваться более 100 лет, что приводит к краткосрочному увеличению выбросов.

Другие воздействия на окружающую среду, связанные с землепользованием и экологической устойчивостью, могут быть значительными.Кроме того, как и в случае с углем, использование биомассы может способствовать загрязнению воздуха и, таким образом, иметь негативные последствия для здоровья населения, проживающего рядом с заводами по производству биомассы.

Что будет питать наше электрическое будущее?

Электричество приобретает все большее значение. Если мы хотим решить проблему изменения климата и уменьшить загрязнение воздуха, нам необходимо увеличить использование всех низкоуглеродных источников энергии, важной частью которых является ядерная энергия.

Чтобы удовлетворить растущий спрос на устойчивую энергетику, Всемирная ядерная ассоциация представила программу «Гармония», в которой поставлена ​​цель, чтобы ядерная энергетика обеспечивала не менее 25% электроэнергии до 2050 года.Это будет означать, что к тому времени ядерное производство должно утроиться во всем мире. Чтобы резко сократить объемы использования ископаемого топлива, атомная энергия и возобновляемые источники энергии должны работать вместе, чтобы обеспечить надежное, доступное и экологически чистое энергоснабжение в будущем.

Белая книга Silent Giant Всемирной ядерной ассоциации содержит дополнительную информацию о необходимости использования атомной энергии в системе экологически чистой энергии.

 


Вас также может заинтересовать

инженеров Массачусетского технологического института открыли совершенно новый способ производства электроэнергии

Инженеры Массачусетского технологического института открыли способ выработки электроэнергии с использованием крошечных частиц углерода, которые могут создавать электрический ток, просто взаимодействуя с органическим растворителем, в котором они плавают.Частицы состоят из измельченных углеродных нанотрубок (синие), покрытых тефлоновым полимером (зеленые). Фото: Хосе-Луис Оливарес, Массачусетский технологический институт. На основе рисунка, предоставленного исследователями.

Сила крошечных частиц в химических реакциях

Новый материал, изготовленный из углеродных нанотрубок, может генерировать электричество, забирая энергию из окружающей среды.

Инженеры Массачусетского технологического института открыли новый способ выработки электроэнергии с использованием крошечных частиц углерода, которые могут создавать ток, просто взаимодействуя с окружающей их жидкостью.

Жидкость, органический растворитель, вытягивает электроны из частиц, генерируя ток, который можно использовать для запуска химических реакций или для питания микро- или нанороботов, говорят исследователи.

«Этот механизм является новым, и этот способ получения энергии совершенно новый», — говорит Майкл Страно, профессор химической технологии Carbon P. Dubbs в Массачусетском технологическом институте. «Эта технология интригует, потому что все, что вам нужно сделать, это пропустить растворитель через слой этих частиц. Это позволяет заниматься электрохимией, но без проводов.

В новом исследовании, описывающем это явление, исследователи показали, что они могут использовать этот электрический ток для запуска реакции, известной как окисление спирта — органической химической реакции, которая важна в химической промышленности.

Страно — старший автор статьи, опубликованной сегодня (7 июня 2021 г.) в Nature Communications . Ведущими авторами исследования являются аспирант Массачусетского технологического института Альберт Тяньсян Лю и бывший исследователь Массачусетского технологического института Юитиро Кунаи. Среди других авторов — бывший аспирант Антон Коттрилл, постдоки Амир Каплан и Хьюна Ким, аспирант Ге Чжан и недавние выпускники Массачусетского технологического института Рафид Молла и Янник Итмон.

Уникальные свойства

Новое открытие стало результатом исследования Страно углеродных нанотрубок — полых трубок, состоящих из решетки атомов углерода, которые обладают уникальными электрическими свойствами. В 2010 году Страно впервые продемонстрировал, что углеродные нанотрубки могут генерировать «термоэлектрические волны». Когда углеродная нанотрубка покрыта слоем топлива, движущиеся импульсы тепла или волны термоЭДС проходят по трубке, создавая электрический ток.

Эта работа привела Страно и его учеников к открытию родственной особенности углеродных нанотрубок.Они обнаружили, что когда часть нанотрубки покрыта тефлоновым полимером, это создает асимметрию, которая позволяет электронам течь от покрытой к непокрытой части трубки, генерируя электрический ток. Эти электроны можно вытянуть, погрузив частицы в растворитель, жадный до электронов.

Чтобы использовать эту особую способность, исследователи создали частицы, генерирующие электричество, путем измельчения углеродных нанотрубок и формирования из них листа материала, похожего на бумагу.Одна сторона каждого листа была покрыта тефлоновым полимером, после чего исследователи вырезали мелкие частицы, которые могут быть любой формы и размера. Для этого исследования они создали частицы размером 250 на 250 микрон.

Когда эти частицы погружаются в органический растворитель, такой как ацетонитрил, растворитель прилипает к непокрытой поверхности частиц и начинает вытягивать из них электроны.

«Растворитель забирает электроны, и система пытается уравновесить движение электронов», — говорит Страно.«Внутри нет сложной химии батареи. Это просто частица, которую вы помещаете в растворитель, и она начинает генерировать электрическое поле».

«Это исследование ловко показывает, как извлекать вездесущую (и часто незамеченную) электрическую энергию, хранящуюся в электронном материале, для электрохимического синтеза на месте», — говорит Джун Яо, доцент кафедры электротехники и вычислительной техники Массачусетского университета в Амхерсте. , который не участвовал в исследовании. «Прелесть в том, что он указывает на общую методологию, которую можно легко расширить для использования различных материалов и приложений в различных синтетических системах.

Сила частиц

Текущая версия частиц может генерировать около 0,7 вольта электричества на частицу. В этом исследовании исследователи также показали, что они могут образовывать массивы из сотен частиц в небольшой пробирке. Этот реактор с «уплотненным слоем» вырабатывает достаточно энергии для запуска химической реакции, называемой окислением спирта, в которой спирт превращается в альдегид или кетон. Обычно эту реакцию не проводят с помощью электрохимии, потому что для этого потребуется слишком большой внешний ток.

«Поскольку реактор с уплотненным слоем компактен, он более универсален с точки зрения применения, чем большой электрохимический реактор, — говорит Чжан. «Частицы можно сделать очень маленькими, и им не нужны никакие внешние провода для запуска электрохимической реакции».

В будущей работе Strano надеется использовать этот вид генерации энергии для создания полимеров, используя в качестве исходного материала только углекислый газ. В родственном проекте он уже создал полимеры, которые могут регенерировать себя, используя углекислый газ в качестве строительного материала в процессе, питаемом солнечной энергией.Эта работа вдохновлена ​​​​фиксацией углерода, набором химических реакций, которые растения используют для создания сахаров из углекислого газа, используя энергию солнца.

В долгосрочной перспективе этот подход может также использоваться для питания микро- или нанороботов. Лаборатория Страно уже приступила к созданию роботов такого масштаба, которые однажды можно будет использовать в качестве диагностических датчиков или датчиков окружающей среды. По его словам, идея получения энергии из окружающей среды для питания таких роботов привлекательна.

«Это означает, что вам не нужно размещать на борту энергоаккумулятор, — говорит он. «Что нам нравится в этом механизме, так это то, что вы можете брать энергию, по крайней мере частично, из окружающей среды».

Ссылка: «Индуцированная растворителем электрохимия на электрически асимметричной углеродной частице Янус» Альберта Тяньсяна Лю, Юитиро Кунаи, Антона Л. Коттрилла, Амира Каплана, Ге Чжана, Хьюна Кима, Рафида С. Моллы, Янника Л. Итмона и Майкла С. Страно, 7 июня 2021 г., Nature Communications .
DOI: 10.1038/s41467-021-23038-7

Исследование финансировалось Министерством энергетики США и начальным грантом от MIT Energy Initiative.

Как производится электричество | Эндеса

А ветер? Откуда это взялось?

Возможно, мы никогда не думали об этом. Солнце оказывает ряд воздействий на наш мир, и одним из них является ветер. Между 90 558 1% и 2 % солнечного излучения  , поглощаемого планетой, в конечном итоге превращается в ветер. Это связано с тем, что земная кора передает воздуху большее количество солнечной энергии, заставляя его нагреваться, становиться менее объемным и расширяться.В то же время самый холодный и тяжелый воздух, поступающий с морей, рек и океанов, приходит в движение, чтобы занять место, оставленное теплым воздухом. Эти колебания производят движущийся воздух, а ветер есть не что иное, как движущийся воздух.

Каждая масса воздуха, которая перемещается из областей с высоким атмосферным давлением в области с более низким давлением со скоростями, пропорциональными перепадам давления между обеими областями (чем больше разница, тем сильнее дует ветер), считается ветром.

 

А солнце? Как он превращается в электричество?

Энергия солнца исходит из солнечного света и тепла.Для их преобразования в энергию необходимы полупроводниковые металлические листы: фотогальванические элементы .

Эти элементы покрыты прозрачным стеклом, пропускающим излучение и сводящим к минимуму потери тепла, и имеют один или несколько слоев полупроводникового материала. Благодаря этим элементам они могут управлять всей этой солнечной энергией.

Все чаще мы можем видеть солнечные батареи на крышах домов и зданий. Эти панели полностью сформированы этими фотогальваническими элементами.

Говорят, что установка стоит дорого, но данные показывают, что покупка окупается , с экономией около 30% от потребления, что в долгосрочной перспективе (25 лет) означает оплату от 20 000 евро до евро. На 30 000 меньше, что делает его очень ценным в среднесрочной и долгосрочной перспективе.Еще одним преимуществом является то, что они не требуют особого ухода.

А как работает солнечная панель?

В основном через солнечные лучи. Они состоят из фотонов , которые достигают фотогальванических элементов пластины, создавая электрическое поле между ними и, таким образом, электрическую цепь. Чем интенсивнее свет, тем сильнее поток электричества.

Фотогальванические элементы отвечают за преобразование солнечного света в электричество в виде постоянного тока с градуировкой от 380 до 800 вольт.Полученный результат можно улучшить с помощью инвертора, который отвечает за преобразование этой энергии в переменный ток , который мы и используем в наших домах.

Наконец, этот переменный ток проходит через счетчик, который измеряет его количество и подает в общую электрическую сеть.

Основы производства геотермальной электроэнергии | НРЭЛ

Геотермальные электростанции используют пар для производства электроэнергии. Пар поступает из резервуаров горячей воды, найденной на несколько миль или более ниже поверхности земли.

Паровая электростанция мгновенного испарения с донным бинарным блоком в Неваде. Фото Денниса Шредера, NREL

Пар вращает турбину, которая приводит в действие генератор, производящий электричество. Существует три типа геотермальных электростанций: сухой пар, вторичный пар и бинарные. цикл.

Сухой пар

Сухие паровые электростанции получают пар из подземных источников.Пар подается по трубе непосредственно из подземных скважин на электростанцию, где она направляется в турбину/генератор Блок. В Соединенных Штатах есть только два известных подземных источника пара:

  1. Гейзеры в северной Калифорнии
  2. Йеллоустонский национальный парк в Вайоминге, где находится известный гейзер под названием Старый. Верный.

Поскольку Йеллоустоун защищен от застройки, единственные установки сухого пара в страна находится у Гейзеров.

Вспышка пара

Паровые электростанции мгновенного испарения являются наиболее распространенными и используют геотермальные резервуары воды. с температурой выше 360°F (182°C). Эта очень горячая вода течет вверх через колодцы в земле под собственным давлением.По мере того, как она течет вверх, давление падает, и часть горячей воды превращается в пар. Затем пар отделяют от воды и используют для питания турбины/генератора. Любая оставшаяся вода и сконденсированный пар впрыскиваются обратно в резервуар, что делает это устойчивый ресурс.

Бинарный пар

Электростанции с бинарным циклом работают на воде при более низких температурах около 225-360°F (107-182°C).Установки с бинарным циклом используют тепло горячей воды для кипячения рабочего тела, обычно органическое соединение с низкой температурой кипения. Рабочая жидкость испаряется в теплообменник и используется для вращения турбины. Затем вода подается обратно в землю для разогрева. Во время работы вода и рабочая жидкость разделены. весь процесс, поэтому выбросы в атмосферу незначительны или отсутствуют.

В настоящее время в электростанциях с бинарным циклом могут использоваться два типа геотермальных ресурсов. для выработки электроэнергии: усовершенствованные геотермальные системы (EGS) и низкотемпературные или совместно производимые ресурсы.

Расширенные геотермальные системы

EGS обеспечивают геотермальную энергию, используя глубинные геотермальные ресурсы Земли. которые в противном случае неэкономичны из-за нехватки воды, местоположения или типа породы. То По оценкам Геологической службы США, потенциально 500 000 мегаватт ресурсов EGS доступна на западе США или около половины текущей установленной электроэнергии генерирующих мощностей в США.

Низкотемпературные и совместно производимые ресурсы

Низкотемпературные и совместно производимые геотермальные ресурсы обычно находятся при температурах 300F (150C) или менее. Некоторые низкотемпературные ресурсы могут быть использованы для производства электроэнергии по технологии бинарного цикла. Совместно производимая горячая вода является побочным продуктом нефтяные и газовые скважины в США. Эта горячая вода изучается на предмет ее потенциала для производства электроэнергии, помогая снизить выбросы парниковых газов и продлить срок службы месторождений нефти и газа.


Дополнительные ресурсы

Для получения дополнительной информации о геотермальных технологиях посетите следующие ресурсы:

Руководство NREL для политиков по производству геотермальной электроэнергии

Геотермальные исследования NREL

Низкотемпературные и совместно производимые ресурсы
Министерство энергетики США  

Расширенные геотермальные системы
U.С. Министерство энергетики

.

Related Post