Характеристики пены монтажной: Монтажная пена — свойства, виды, применение, рекомендации по использованию

Разное
alexxlab

Содержание

Характеристики монтажной пены

Монтажная пена – строительный материал, без которого нельзя обойтись, ремонтируя квартиру или дачу. Многие профессионалы, любители применяют ее в своих работах.

Трудно найти более лучшее средство, чтобы закрепить дверные или оконные блоки, прикрепить пенопласт, заделать щели, уплотнить швы.

Чтобы выбрать хорошую монтажную пену, необходимо иметь четкое представление о ее технических характеристиках. Поэтому стоит внимательно читать этикетку, приклеенную на балончик. К сожалению, некоторые производители не придерживаются правил во время производства данной продукции. Чтобы избежать попадания в затруднительную ситуацию, покупать необходимо только те товары, производители которых имеют хорошую репутацию. Например, компания Belinka всегда выделялась среди остальных, постоянно доказывает свою надежность. Все товары данной фирмы имеют высокое качество.

И так, давайте рассмотрим главные характеристики монтажной пены, чтобы знать, на что обращать внимание, делая покупку:

  • температура, при которой используется монтажная пена. Это очень важно, так как застывание данной смеси происходит за счет влажности. При низких температурах монтажная пена будет затвердевать медленно, поэтому часто добавляют специальные компоненты, что ускоряет сам процесс;
  • расширение монтажной пены – очень важная характеристика. Так как данный продукт имеет 2 степени расширения: при нажатии, выходе из тюбика, а потом во время застывания. Стоит следить за этим процессом, ведь пена будет значительно увеличивать свои размеры. Если обрабатываемая поверхность достаточно хрупкая, это может навредить всей конструкции;
  • вязкость, эта характеристика монтажной пены проявляется при самой работе. Она обеспечивает не растекание смеси по всей поверхности при вертикальном положении деталей. Если пена будет не достаточно тягучей, то большая часть просто упадет на пол, что увеличит расход монтажной пены.

Стоит отметить, что в зависимости от температуры, монтажная пена делится на зимнюю, летнюю. На баллонах обязательно указывают тот уровень температуры обрабатываемой поверхности, которая необходима.

Кроме того, монтажную пену можно разделить на профессиональную и полупрофессиональную. В первом случае обязательно необходимо применять специальный пистолет, главное преимущество которого – это способность работать в труднодоступных местах. Следует помнить, что такое устройство требует дополнительного ухода, такого, как промывание чистящими средствами после каждого использования.

Полупрофессиональная монтажная пена совершенно не требует дополнительных средств. Все работы производятся с помощью пластмассовой трубки, которая надевается на клапан баллона. Использовать данное средство достаточно легко, что не требует особых навыков, опыта.

Расход монтажной пены зависит от способности к расширению и величины обрабатываемой пустоты. Некоторые дешевые тубики с монтажной пеной не позволяют выдавливать ее до конца, поэтому не стоит экономить, иначе можно потратить большую сумму, чем ожидалось, ведь придется покупать второй баллон.

Основные функции монтажной пены – это, конечно же, герметизация, однако ее часто используют и при звукоизоляции.

Специалисты рекомендуют не тратить время зря, тем, кто будет работать во время низких температур, следует приобретать монтажную пену BELINKA BELPUR PU FOAM GUN WINTER, которая используется при герметизации и изоляции деревянных материалов, бетона, кирпича, стекла, металла. Технические характеристики данной монтажной пены делают ее одним из самых надежных и долговечных строительных материалов. Такой помощник станет незаменимым при любых ремонтных работах.

Последние статьи

Чем обработать шкаф для защиты от плесени при сырости?

15.10.2021

Как выбрать краску для железного бака?

12.10.2021

Чем покрасить деревянную собачью будку?

07.10.2021

Чем покрасить оштукатуренный фасад дома?

05.10.2021

Как выбрать монтажный клей для лепнины?

30.09.2021

Парафин для защиты дерева: свойства и преимущества

27.09.2021

адгезия, теплостойкость, параметры по ГОСТу

Большинство современных строительных работ осуществляется с использованием монтажной пены. Это универсальное вещество может быть использовано в конструкциях любого типа для герметизация швов и стыков, повышения шумо- и гидроизоляционных свойств. Технические характеристики монтажной пены во многом влияют на качество результата. Поэтому так важно разбираться в разновидностях и свойствах материала.

Состав монтажной пены необходимо подбирать, опираясь на тип проводимого ремонта, личные навыки работы с веществом. Разделить все многообразие веществ можно на 2 основных группы:

  • Однокомпонентные – чаще всего этот вид представляет собой полиуретановую структуру. Продается смесь готовой к использованию, так как уже находится под давлением.

  • Двухкомпонентные составы подходят для осуществления работ профессиональными работниками в промышленных масштабах. Залогом успешного использования такой пены является соблюдение пропорций при смешивании.

Большим спросом пользуется первая группа, со смесями можно работать сразу же после приобретения. В составе можно найти такие вещества:

  • Предполимеры, выступающие основой в виде изоцианата, полиола.
  • Вытеснительный газ.
  • Присадочные вещества, обеспечивающие оптимальное образование объемов пены и повышающие степень сцепления.

Эксплуатационные свойства

Рабочие свойства строительного материала одновременно являются его особенностями и плюсами:

  • Высокий уровень сцепления с практически любыми поверхностями: камень, металл, полимеры, пластик, дерево.
  • Устойчивость к перепадам температур, способность сохранять первоначальные свойства в диапазоне от -5 до +90 °C.
  • Вещество является диэлектриком.
  • Максимально быстрое схватывание и застывание от 8 минут до одних суток, после завершения полимеризации не выделяет токсины.
  • Некоторые разновидности монтажной пены являются негорючими, отличаются повышенной влагостойкостью.
  • Звукопоглощающие и звукоизоляционные характеристики.
  • В жидком виде имеет упругую и эластичную консистенцию, которая позволяет заполнять даже труднодоступные выемки и щели, защищает от разрушений вследствие разрыва.
  • Обладает низкой теплопроводностью.
  • Даже за весь длительный период эксплуатации дает минимальную усадку в размере 5%.
  • Высокая устойчивость к воздействию вредных химических веществ.
  • Отличается повышенной прочностью.

Отличительной особенностью и признаком качества пены считается светлый с зеленцой или желтоватый оттенок.

Основные технические параметры

Большинство перечисленных свойств производители обычно указывают на упаковке строительного материала. Некоторые параметры строительной смеси позволяют выявить ее качество.

Первичное расширение

Расширение пенной смеси при монтаже оказывает влияние на ее заполняющее свойство, надежность готового шва, его прочность и упругость. Пена меняет свой объем сразу же после надавливания на рычаг пистолета. То есть, ложиться в щели или на поверхность материала она уже будет, проходя первичное расширение. Состав увеличит свой объем в несколько раз.

Вторичное расширение и усадка

Под этим параметром подразумевается дальнейшее увеличение объема смеси после первичного расширения до момента полного застывания, в зависимости от марки продукции. Этот параметр может отличаться или варьироваться в пределах 15-100%. Однако, чем ниже этот показатель, тем для материала лучше. Так как из-за неправильного расчета количества вещества можно с легкостью деформировать и даже сломать конструкции, такие как деревянные окна или ПВХ-системы.

Скорость полимеризации

Если учитывать условия эксплуатации с температурой 20 °C и влажностью 65%, высыхание верхнего слоя наступает, в среднем, спустя 3 часа. То есть, за этот период времени пена уже набирает свой полезный объем. Через 4 часа застывшую смесь уже можно обрезать. Чтобы герметик полностью застыл, должно пройти до одних суток времени. Способствует скорейшей полимеризации строительной смеси обычная вода. После нанесения вещества на него можно разбрызгать небольшое количество жидкости.

Адгезия

Адгезия – это способность монтажной пены к сцеплению с разнородными поверхностями. Она с легкостью сцепляется с любым материалом, но не сможет справиться с силиконом, льдом, маслом, тефлоном, полипропиленом и полиэтиленом. Это список самых очевидных и не предназначенных для склейки материалов.

Теплостойкость

Существует класс В3, где после затвердевания, отвердения и застывания монтажная пена будет выполнять свои функции в пределах от -40 до +90 °C. В непродолжительных промежутках времени до 130 °C.

Разновидности с пометкой B2 являются невоспламеняемыми и самозатухающими.

Назначение класса В1 – негорючесть пены. Ее огнестойкость длится до 4 часов.

Боязнь ультрафиолетовых лучей

Основа пены из полиуретана наделена нужными для эксплуатации свойствами, но для чего она непригодна, так это для нахождения под воздействием УФ. Под влиянием УФ лучей материал начинает менять цвет на более темный и постепенно терять прочность, разрушаться. Для защиты необходимо нанесение слоя грунтовки, чтобы исключить прямой контакт пены с солнцем.

Основные виды монтажного вещества

Все виды монтажной пены делятся на несколько крупных групп.

По способу применения различают:

  • Вещество профессионального назначения.
  • Стандартную или полупрофессиональную пену.

Пена для профессионального использования помещена в особый строительный пистолет, оснащенный кольцом и клапаном. Благодаря этим деталям, можно регулировать объем выходящей из баллона смеси. Устройство позволяет помещать состав в самые труднодоступные места и обеспечивает экономию расходования. Обычно баллоны профессионального назначения представлены в виде емкостей 1000 мл и предназначены для осуществления больших объемов работ. Застывшая пена имеет однородную мелкоячеистую структуру, без повторного расширения, либо с очень низким, а также существенное отличие от бытовой в виде высокой плотности.

Разновидности для бытового использования оснащены специальной пластиковой трубкой и рычагом, который позволяет открывать клапан и выдавать смесь наружу. Обычно выпускается стандартная смесь в меньших емкостях, имеет более доступную цену, проста в эксплуатации. Основным плюсом стандартного образца является возможность использования неизрасходованных остатков из баллончика в течение месяца. Подходит такой бытовой вид больше для решения незначительных бытовых и ремонтных проблем.

В зависимости от времени года, когда проводится ремонт, различают такие виды монтажной пены:

  • Летние – подходят для диапазона от + 5 до +35 °C.
  • Зимние – могут выдержать холод до -18 °C, а плюсовую температуру выдерживают до +35 °C.
  • Универсальные – подходят для применения в диапазоне температур от -10 до +35 °C.

Очень важно знать, что указанная температура актуальна не для воздуха, а для поверхностей, с которыми будет осуществляться работа при помощи монтажной пены. Также температура будет влиять и на расход смеси. Чем ниже будет этот показатель, тем, соответственно, и меньше будет выход монтажной смеси, и наоборот.

Степень горючести – это ещё один критерий для классификации:

  • В1 – огнеупорный материал.
  • В2 – самозатухающий.
  • В3 – горючая смесь.

Часто при выборе нужного вида монтажной пены стоит обращать внимание на имя производителя и страну-изготовителя. Макрофлекс– это финская монтажная пена, которая находится в числе самых эффективных и популярных продуктов. Является универсальной находкой для новичков и профессионалов. Также к качественным торговым маркам относятся польский Tytan, эстонский Penosil и бельгийский Soudal.

На видео:  отличие бытовой и профессиональной монтажной пены

Параметры по ГОСТу

Основные параметры:

  • Плотность вещества 25-30 кг/м³.
  • Прочность на растяжение 0,12 Н/мм².
  • Прочность на разрыв и изгиб 12, 17 кг/см² соответственно.
  • Устойчивость в объеме 7%.
  • Сила склеивания и компрессии при минимальных величинах 3 N/см³.
  • Теплопроводность монтажной пены (коэффициент) 0,032 Вт/(м*К).
  • Класс огнеупорности В3 DIN 4102.
  • Стандартная теплоустойчивость — 40 + 90 °C, кратковременный показатель -55, +130 °C.
  • Температура возгорания 400 °C.

Можно ли использовать просроченную монтажную пену

В среднем, срок годности монтажной пены не превышает 18 месяцев, дата окончания пригодности указывается на упаковках. Просроченная монтажная пена уже не будет соответствовать всем изначально заявленным характеристикам, но эксплуатироваться всё же может. Чем больше времени стоит баллон, тем более вязким становится состав внутри него. Если пена просрочена, используя ее, будет сложно добиться качественного результата. Специалисты и вовсе рекомендуют не только не использовать такой состав, но и не обеспечивать хранение баллона у себя дома. Необходимо правильно утилизировать баллоны с пеной в специальных пунктах, не стоит бросать с силой тубы на землю, или тем более в огонь.

Применение материала: правила и уместные случаи

Каждая упаковка пены имеет стандартную инструкцию к применению, используется на каждом из этапов строительных работ. При ремонте дома или квартиры состав часто выполняет функции герметика. Если рассматривать конкретное применение смеси, то актуальными будут такие случаи:

Особенности использования базируются на соблюдении таких основных правил:

  1. Предварительно нужно подготовить площадь, подлежащую обработке пеной, очистить от грязи, пыли или других веществ.
  2. Обеспечить рукам защиту, надев резиновые перчатки, так как пену очень сложно отмывать с кожи.
  3. Обязательно необходимо изучить рекомендации производителя, указанные на упаковке.
  4. Поместить баллон пены в пистолет, после этого направить трубочку в нужную щель или поверхность.
  5. Швы заполняются на одну треть от всего объема, чтобы ускорить процесс затвердевания нужно сбрызнуть массу водой. Под влиянием влаги полимеризация вещества происходит быстрее.
  6. Через 15-30 минут можно заметить, что полное расширение пены закончено. Если в проемах не хватает вещества, можно добавить дополнительно немного смеси.
  7. После этого нужно оставить вещество на 24 часа для полного застывания.
  8. В завершении процедуры, нужно избавиться от излишков материала. Можно использовать для этого острый нож, что поможет идеально выровнять слой.

Меры предосторожности

Во время ремонта и при эксплуатации вещества, необходимо учитывать не только свойства монтажной пены, плюсы и минусы, но также соблюдать меры предосторожности. Основные из них:

  • Использовать смесь нужно в хорошо проветриваемых помещениях, так как при ее полимеризации выделяется бутан и углекислый газ, токсичные для человека.
  • Осуществлять работу нужно в специальной одежде и перчатках, прикрывать глаза специальными очками. При попадании монтажной пены на одежду или кожу, необходимо постараться сразу же устранить ее, пока она находится в жидком состоянии, так как после затвердевания она плохо поддается очистке.
  • Сам баллон с пеной необходимо хранить в темном месте, избегать попадания на него солнечных лучей, беречь его от огня.

 

Монтажная пена – это очень нужная и полезная вещь при ремонте, строительстве, монтаже конструкций. Она может выполнять функции герметиков, обеспечивать хорошую защиту от шума, удерживать тепло. Поэтому, к выбору вещества необходимо подходить правильно и осознанно, покупать только качественную продукцию. Очень важно соблюдать правила применения, чтобы обеспечить качество и надежность работы.

Особенности и применение монтажной пены (2 видео)

 

Особенности использования и технические характеристики монтажной пены ( 24 фото )

На какие технические характеристики монтажной пены стоит обратить внимание. Часть I.

Ни один ремонт не обходится без применения монтажной пены – пенополиуретанового герметика с отличными звуко-, тепло- и гидроизоляционными свойствами. Монтажная пена применяется при монтаже дверных коробок, оконных профилей, заполнения швов и трещин, герметизации стыков, заполнения пустот и т.д. Но простому потребителю иногда бывает сложно разобраться в терминах, указанных на этикетках баллонов с монтажной пеной. И сейчас мы попробуем выяснить, на какие технические характеристики монтажной пены стоит обращать внимание.

На каждом баллоне с монтажной пеной указана инструкция (см. способ применения) и, казалось бы, в ней нет ничего сложного. И правда, очистить поверхность, встряхнуть баллон и нанести пену – что может быть проще? А вот как сориентироваться в характеристиках монтажной пены? Как правильно их расшифровать, чтобы выбрать нужную пену и правильно ее использовать? Давайте разберемся вместе.

Из чего состоит монтажная пена?

Монтажная пена по составу делится на однокомпонентную и двухкомпонентную. При производстве однокомпонентной монтажной пены компоненты и добавки смешиваются в больших емкостях на заводе, после готовым составом заполняется баллон, на который устанавливается клапан и добавляется смесь газов, после чего монтажная пена готова к использованию. При производстве двухкомпонентной монтажной пены используется емкость, разделенная на 2 части, в одной из которой находится смесь компонентов (такая же, как для производства однокомпонентной пены), во второй – смесь различных пенообразующих веществ, катализаторов и ускорителей. Смешивание компонентов в данном случае происходит непосредственно в процессе выхода пены. Оба вида монтажной пены обладают прекрасными потребительскими свойствами: высокой адгезией, стабильным выходом, хорошо выдерживают температурные нагрузки и обладают высокой плотностью.

Для домашнего мастера и профессионала

Пенополиуретановая монтажная пена может применяться как в бытовых, так и в профессиональных целях. Если требуется заделать трещину, щель или утеплить балкон – достаточно воспользоваться бытовой пеной. В свою очередь, специалисты, занимающиеся ремонтными работами в больших масштабах, выбирают профессиональную пену. В отличие от бытовой, она оснащена специальным адаптером, при помощи которого баллон устанавливается на монтажный пистолет, позволяющий дозировать выход пены более точно и экономично.

Объем наполнения баллона

На баллоне с монтажной пеной может быть указана такая техническая характеристика, как «номинальный объем заполнения» – это собственно объем самой емкости, сколько она может вместить. Обычно это 1000 мл. Реальный объем наполнения баллона рабочим веществом всегда меньше номинального. При обозначении объема «пена монтажная 750 мл» вес баллона объемом 1000 мл обычно составляет около 850-960 граммов, из которых приблизительно 120 граммов – это вес самого баллона.

Объем выхода пены

Очень часто на этикетке баллона присутствует обозначение «пена монтажная 65» или «пена монтажная 45». Что имеется в виду? Речь идет о выходе пены в литрах, т.е. количестве литров, которое можно получить после выпенивания всего баллона и полной полимеризации пены. Сразу оговоримся, что данное количество – ориентировочное, рассчитанное на то, что пену будут использовать при средней температуре +23 ºС и относительной влажности воздуха 50%. Как правило, пены с выходом до 25-35 литров используются для бытового применения, пены с выходом до 45-65 литров – для профессионального применения.

Первичное и вторичное расширение

В момент выпенивания (выхода пены из баллона) объем монтажной пены увеличивается. Процент расширения может составлять до 30-50%. Специалисты используют термины «первичное расширение» и «вторичное расширение», где под первым понимается выход пены из баллона, а под вторым – увеличение пены в объеме до полной полимеризации, или, говоря другими словами – процесс отверждения или застывания пены. Помните о расширении и контролируйте выход монтажной пены (в зависимости от того, какой пеной вы работаете – профессиональной или бытовой)! Например, заполнять бытовой пеной трещину следует максимум на 1/3 – в противном случае вы можете деформировать конструкции или придётся срезать много лишней пены. Также отдельно стоит отметить класс специальных монтажных пен с особенно низким вторичным расширением. Данные пены незаменимы для заполнения чувствительных к давлению швов. Другими словами, при использовании такой пены конструкцию «не поведет» от вторичного расширения монтажной пены.

Итак, как вы видите, разобраться в характеристиках монтажной пены не так уж и сложно. Главное – знать на какие параметры стоит обращать внимание. Однако это далеко не все! Другие не менее важные характеристики монтажной пены мы попробуем рассмотреть во второй части данной статьи.

Вопросы и ответы — Монтажные пены ТехноНИКОЛЬ

Как сделать тёплые и красивые откосы

Как удалить монтажную пену?

Свежую пену можно удалить специальным очистителем. Твердую пену можно удалить только механическим путем

Как установить окна с монтажной пеной

Что такое монтажная пена?

Пенополиуретановый герметик или смесь газа, растворенного в жидком полиуретане.

Инструкция по применению монтажных пен

В каких областях можно применять клей-пену?

Полиуретановые клеи востребованы в большинстве областей строительства, они могут применяться при производстве работ на крышах, фасадах, фундаментах для приклейки различных типов теплоизоляции, отдельные клей-пены могут применяться для устройства кладки стен и перегородок, в отделочных работах при облицовке стен гипсокартоном или другими листовыми материалами.

Напыляемый утеплитель ТЕХНОНИКОЛЬ Master: инструкция по применению

Какие материалы приклеивает клей-пена?

При помощи полиуретановой клей-пены можно приклеить большинство строительных и отделочных материалов: бетон, кирпич, дерево, пластики, металл. Клей имеет плохую прочность сцепления с силиконами, тефлоном, полиэтилен.

Мастер-класс: Кладка газобетонных блоков с клей-пеной ТЕХНОНИКОЛЬ для строительного портала Forum House

Каким образов возможно удалить затвердевший силиконовый герметик?

Затвердевшие силиконовые герметики возможно удалить только механически.

Из каких компонентов состоит монтажная пена?

Пена состоит из трех основных компонентов: жидкого преполимера, газа-растворителя и газа-вытеснителя.

Чем отличаются всесезонные и зимние монтажные пены?

Отличаются температурой окружающего воздуха при применении. Зимние пены применяются при температуре от -18 до +35°С, всесезонные от -10 до +35°С.

В чем отличия бытовых монтажных пен от профессиональных?

Отличие бытовой пены от профессиональной в способе применения – для профессиональной пены используют специальный пистолет, который накручивается на крест-кольцо. Бытовая пена укомплектована специальной трубочкой с апликатором, которая накручивается на клапан. Так же отличие в характеристиках пены – бытовая имеет более высокое вторичное расширение по сравнению с профессиональной.

Что означают понятия «первичное» и «вторичное» расширение пены?

Первичное расширение — это увеличение объема жидкой пены непосредственно после выхода из баллона. Вторичное расширение – это увеличение объема пены после окончания первичного расширения и до полной полимеризации.

Каковы основные технические характеристики монтажной пены?

Теплопроводность, плотность, эластичность, выход в литрах, время полной полимеризации, время образования поверхностной пленки и время резки — это основные параметры, на которые стоит обратить внимание перед выбором монтажной пены.

Что такое противопожарная (огнестойкая) монтажная пена?

Это монтажная пена, в состав которой при производстве добавляют специальные противопожарные компоненты: антипирены, пламегасители и др. Препятствует распространению огня и продуктов горения через монтажные швы противопожарных окон, дверей, ворот или противопожарных преградах (стенах, перекрытиях). Огнестойкая монтажная пена ТЕХНОНИКОЛЬ производится по специальной технологии Fire resistance limit (FRL) разработанной собственным R&D центре ТЕХНОНИКОЛЬ. Противопожарные характеристики нормируются пределом огнестойкости конструкции швы в которой заполнены Огнестойкой монтажной пеной, предел огнестойкости Монтажной пены ТЕХНОНИКОЛЬ 240 PROFESSIONAL превышает 240 мин.

Имеются ли специальные правила техники безопасности при хранении баллонов с монтажной пеной?

Да, особое внимание необходимо обратить на хранение аэрозольных баллонов вообще и баллонов с монтажной пеной в частности. На этикетке каждого баллона содержится информация по безопасному хранению.

Как правильно хранить монтажную пену?

Монтажную пену следует хранить при температуре от +5 ºС до +25 ºС в помещениях или на закрытых площадках, обеспечивающих защиту от атмосферных осадков, попадания прямых солнечных лучей, а также нагревания свыше 50°С, с соблюдением правил противопожарной без-опасности, установленных для хранения горючих материалов, на расстоянии не менее 1 м от нагревательных приборов.

От чего зависит выход монтажной пены?

Выход монтажной пены зависит от многих факторов, от качества самого продукта, от условий хранения, температуры и относительной влажности окружающей среды при применении и температуры самого баллона, от качественного перемешивания содержимого баллона перед нанесением.

Подвержена ли твердая пена старению?

Твердая пена не подвержена старению в отсутствие УФ излучения, высокой температуры (> 110 °C), щелочей или кислот и некоторых химических соединений, используемых для удаления отвердевших пятен пены.

[Советы экспертов] Монтажная пена. Основные понятия KUDO

История появления монтажной пены

Монтажная пена в том виде, в котором она известна сейчас, начала широко использоваться в 80-х годах прошлого века. Но изобретен пенополиуретан, одним из видов которого является монтажная пена, был гораздо раньше, еще в 40-х годах швейцарцем Отто Байером, руководившим лабораторией в химическом концерне Bayer. Кстати, сам Отто никакого отношения к Фридриху Байеру, одному из основателей концерна, не имеет, просто однофамилец.

Однокомпонентная, полуторакомпонентная и двухкомпонентная монтажная пена

Монтажная пена бывает однокомпонентной и двухкомпонентной. В однокомпонентной пене в баллон помещается предварительно смешанный преполимер и газ-вытеснитель, называемый также пропеллентом. При выходе из баллона преполимер вспенивается, начинает взаимодействовать с влагой, содержащейся в воздухе, и полимеризуется. При недостатке влаги полимеризация будет затруднена, внутри массива пены могут остаться большие пустоты.

Полуторакомпонентная пена, часто называемая в обиходе двухкомпонентной, хранится в баллоне, состоящем из двух частей. В одной части находится преполимер, практически такой же, как и в однокомпонентной пене, а в другой – катализатор, ускоряющий процесс отверждения. Продукты из разных частей баллона смешиваются непосредственно перед применением. Полуторакомпонентная пена имеет более высокую плотность по сравнению с однокомпонентной, меньшее вторичное расширение и меньший выход. Но зато очень быстро отверждается. Применяют такую пену для быстрой фиксации оконных и дверных блоков в проемах взамен механического крепления. Полуторакомпонентная пена используется довольно редко, поскольку она дороже, имеет меньший объем выхода и наносить ее надо в течение 15 минут после активации, иначе она застынет в баллоне. В подавляющем большинстве случаев использование однокомпонентной пены экономически более целесообразно.

Двухкомпонентная пена получается непосредственно в процессе применения путем смешивания двух разных компонентов при помощи специального оборудования. По такой технологии производят очень много продуктов: от матрасов и автомобильных сидений до теплоизоляции, подошв обуви и заменителей дерева.

Область применения монтажной пены

Благодаря таким свойствам монтажной пены, как низкая воздухопроницаемость, низкая теплопроводность, удобство использованя, нашла свое применение для герметизации зазоров при установке окон и дверей, заделки щелей, изоляции проемов под трубо- и кабелепроводы, утепления балконов и других строительных конструкций. На сегодняшний день известно более 2000 сфер применения монтажной пены, начиная от строительства и заканчивая искусством. Нужно четко понимать, что обычную монтажную пену не рекомендуется использовать для гидроизоляции, поскольку она впитывает влагу. Для гидроизоляции в некоторых случаях могут применяться только специальные виды монтажной пены. Кроме того, монтажная пена разрушается под действием ультрафиолета, поэтому обязательно требует защиты от солнечного света.

Отличная адгезия вспененного полиуретана с большинством поверхностей также нашла применение в строительстве. Появились специальные продукты, такие, как клей-пена на основе пенополиуретана. От обычной монтажной пены они отличаются тем, что имеют относительно невысокие первичное и вторичное расширение, но при этом более высокие клеящие свойства. При помощи этих продуктов клеят на стены теплоизоляционные плиты, используют их в качестве связующего для строительных блоков, материалов из дерева, гипсокартона, металлочерепицы.

Объем выхода монтажной пены

Пожалуй, первая характеристика, на которую обращают внимание конечные потребители. Это действительно важно: чем больше пены выходит из баллона, тем больший объем работы можно проделать с ее помощью. А это прямая экономия и времени, и денег. От чего же зависит объем выхода пены?

В первую очередь от количества активного вещества, заправленного в баллон. Критерием этого может служить масса баллона. Часто можно обнаружить, что одинаковые с виду баллоны разных производителей с одинаковым заявленным объемом выхода пены отличаются по массе очень сильно. При прочих равных условиях из более тяжелого баллона должно выйти больше пены, чем из более легкого.

Однако объем выхода зависит не только от заполнения баллона. Готовая пена от разных производителей может иметь различные характеристики, например, плотность. И не всегда из более тяжелого баллона можно получить больший объем выхода, чем из более легкого. Точно так же не всегда пена, дающая больший объем, оказывается лучшей по другим характеристикам. Например, она может иметь меньшую плотность и, как следствие, худшую теплоизоляцию.

Часто люди, решившие самостоятельно проверить, соответствует ли объем выхода пены заявленному производителем, обнаруживают, что объем оказался меньше ожидаемого, и спешат обвинить производителя в недобросовестности. Но нередко причина кроется не в «обвесе» покупателя, а в условиях испытаний. Объем выхода пены указывается для нормальных условий, которыми считаются температура +23°С и влажность 50%. Получить максимальный объем выхода пены можно только в лабораторных условиях, полностью соблюдая технологию испытаний, применяемую производителем. Например, в сухую погоду или в мороз объем выхода пены может оказаться меньше в полтора и даже в два раза. Что же касается сравнений объема выхода из различных баллонов, они могут быть корректными только если испытания этих образцов проводятся в одинаковых условиях, одним человеком из одного пистолета и лучше всего одновременно.

Первичное расширение монтажной пены

Первичным расширением называют увеличение объема жидкой пены непосредственно после выхода пены из сопла. Механизм этого процесса следующий. Газы и преполимер находятся в баллоне под давлением около шести атмосфер. Перед применением баллон взбалтывается, газы смешиваются с преполимером и частично в нем растворяются. При выходе из баллона смесь испытывает резкое падение давления и сжатые внутри пузырьки газа стремительно расширяются, образуя пену. Процесс аналогичен вспениванию газированных напитков при открывании герметичной бутылки. Вот почему важно тщательно взбалтывать баллон перед применением: если этого не сделать, на выходе не получится качественной пены с заявленным объемом выхода.

Естественно, величина первичного расширения очень сильно зависит от внешних условий: температуры воздуха, способа нанесения, квалификации работника.

Вторичное расширение монтажной пены

Вторичное расширение – это увеличение объема пены после окончания первичного расширения и до полной полимеризации. Указывают его в процентах. Вторичное расширение пены происходит в результате взаимодействия преполимера с влагой. При этой реакции выделяется углекислый газ, происходит формирование структуры и отверждение пены. Величина вторичного расширения зависит от применяемой рецептуры и может у разных производителей и разных типов пены колебаться в пределах от 15% до 60% у профессиональной пены и от 200% до 300% у бытовой. Вторичное расширение – весьма важный показатель, напрямую влияющий на качество большинства выполняемых с пеной работ. Поэтому перед началом работы с новой для себя пеной рекомендуется провести эксперимент, чтобы определить степень вторичного расширения и учитывать этот параметр при работе.

Давление расширения монтажной пены

Расширяясь, пена оказывает давление на конструкции. Сила этого давления зависит не только от степени вторичного расширения, но и от других характеристик пены. Не всегда пены с большой степенью вторичного расширения оказывают большое давление на конструкцию. Установить это можно только опытным путем и, конечно, затем учитывать этот параметр при работе с конкретной маркой пены. При переходе на другую пену нужно иметь в виду, что у нее давление расширения может оказаться больше и она может сильнее деформировать конструкцию.

Время первичной обработки монтажной пены

Под этим термином понимают время, через которое пена затвердеет достаточно для того, чтобы ее можно было подвергать механической обработке: обрезать лишнее, готовить к покраске или шпаклевке. Этот параметр производители указывают на баллоне, как правило, он составляет несколько десятков минут. Но следует иметь в виду, что этот срок указан для идеальных условий. В реальности лучше всего перед механической обработкой сделать пробный срез и убедится, что пена достаточно затвердела.

Время полной полимеризации монтажной пены

Время полной полимеризации – время, за которое в пене заканчиваются все химические и пена приобретает окончательную структуру. Время полимеризации зависит от нескольких параметров: от качества самой пены, от толщины шва, от количества доступной влаги и от температуры. Чем быстрее влага проникает в пену, тем быстрее и качественнее идет процесс полимеризации. Именно поэтому рекомендуется перед нанесением пены увлажнить поверхности, на которые она будет наноситься, а после нанесения еще раз увлажнить уже запененный шов. Однако следует избегать чрезмерного смачивания – поверхность должна быть влажной, но не мокрой. С температурой все так же, как в любой химической реакции – чем теплее, чем быстрее идет реакция. В нормальных условиях время полимеризации монтажной пены составляет порядка 12 часов, но в морозную или в сухую погоду полимеризация идет гораздо медленнее и может растянуться на несколько дней. Что касается толщины шва, то многочисленные эксперименты различных производителей показывают, что в застывающую пену влага может проникать на глубину не более 3 см. К слоям, лежащим глубже 3 см от края, проникновение влаги затруднено, поэтому диаметр валика пены, наносимой за один проход, не должен превышать 6 см. Если он будет толще, есть большой риск, что середина валика так и не полимеризуется – там образуется пустота. Такое уплотнение будет иметь худшую звуко- и теплоизоляцию и может легко разрушиться. Именно поэтому большие проемы нужно заполнять пеной послойно. Второй слой можно наносить не раньше, чем образуется корочка на первом. И обязательно необходимо увлажнить поверхность, на которую будет наноситься второй слой.

«Усадка» монтажной пены

В процессе полимеризации образовавшийся в пене углекислый газ, создающий внутри избыточное давление, постепенно выходит из пор и замещается воздухом. В зависимости от того, с какой скоростью идут эти процессы, пена может давать усадку либо расширение. В мировой практике считается, что колебания размеров пены ±10% являются допустимы для установки пластиковых окон и дверей.

Условия хранения и срок годности монтажной пены

Хранить баллоны с монтажной пеной нужно обязательно в вертикальном положении клапаном вверх при температуре от +5°С до +25°С. Только при этих условиях производитель гарантирует, что пена сохранит свои качества на протяжении всего срока годности, указанного на упаковке. Пределы температуры, при которых должна храниться пена, могут не совпадать с пределами, при которых она может наноситься. Так, например, с зимней пеной можно работать при температуре баллона до -10°С, но если хранить ее на морозе, она придет в негодность гораздо раньше срока, указанного на баллоне. Замораживание пены допускается, но после этого для сохранения рабочих характеристик пены нужно провести правильное размораживание баллонов. Размораживать их нужно медленно, не допуская резкого нагрева.

Условия нанесения монтажной пены

У различных видов монтажной пены условия нанесения могут быть разными, обычно они указываются на баллоне. Для летних видов пены температура воздуха обычно лежит в пределах от +5°С до +35°С, наиболее качественные зимние, например, KUDO ARKTIKA NORD, могут применяться при температуре воздуха до -25°С.

Следует различать температуру наружного воздуха, при которой допускается нанесение монтажной пены и температуру самого баллона. Так, например, зимнюю пену KUDO ARKTIKA можно применять при температурах -18°С до +35°С, при этом температура баллона должна быть не ниже -10°С. Это считается очень хорошим показателем, поскольку в пенах KUDO применяется технология AFC (Advanced Freeze Control), позволяющая проводить работы охлажденным баллоном. Для пены, не имеющей подобных технологий, допустимая температура баллона обычно находится выше 0°С. Если баллон остыл ниже критической температуры, его необходимо подогреть, поместив на некоторое время в теплую воду. Ни в коем случае нельзя греть баллон при помощи открытого огня или строительного фена – от перегрева баллон может взорваться. Еще один важный нюанс – не должно быть слишком большого перепада между температурой пены и температурой наружного воздуха, иначе после нанесения пена может попросту потечь в проеме. Для подбора оптимальной температуры пены KUDO можно воспользоваться специальной таблицей.

Температура окружающей среды 20°С 0°С -10°С -23°С
Температура баллона +18°С … +22°С +15°С … +18°С +10°С … +15°С +5°С … +10°С

Не менее важным условием для правильного нанесения монтажной пены является достаточная влажность, обычно она должна быть минимум 50%. Пена полимеризуется, вступая в реакцию с влагой, поэтому для получения качественного шва рекомендуется перед началом работы всегда увлажнять поверхность, на которую будет наноситься пена, а после нанесения еще раз увлажнять запененный шов. Если пена наносится в несколько слоев, увлажнять следует каждый слой.

Огнестойкая монтажная пена

Огнестойкая монтажная пена применяется в местах с повышенными требованиями к противопожарной безопасности. Как правило, огнестойкая пена имеет розовый или красный цвет, изредка – серый. Благодаря этому легко проверить, какая пена использована в конструкции – огнестойкая или обычная.

Важно различать огнестойкость и горючесть. Под горючестью понимают способность материала поддерживать горение, а под огнестойкостью – способность материала сохранять целостность (E) и теплоизолирующие свойства (I). Испытания на предел огнестойкости производятся для швов глубиной 100 и 200 мм и толщиной от 10 до 40 мм. Измеряется время в минутах, в течение которого материал смог сохранить целостность и теплоизолирующую способность под воздействием открытого пламени.

Показатели огнестойкости монтажной пены KUDO

Толщина шва глубиной 100 мм
40 мм EI60
30 мм EI60
20 мм EI90
10 мм EI150
Толщина шва глубиной 200 мм
40 мм EI120
30 мм EI150
20 мм EI150
10 мм EI180

Изучая показатели огнестойкости различных марок пены, следует иметь в виду, что испытания могут производиться для разных типов швов: однородного из пены и комбинированного из пены и базальтовой ваты. Если испытания проводятся для комбинированного шва, это обязательно указывается в характеристиках. Такие швы практически всегда имеют более высокие показатели огнестойкости, но это не означает, что сама пена в них имеет более высокую огнестойкость. Корректно сравнивать только показатели для швов одного типа.

Правила работы с монтажной пеной

Поскольку монтажная пена очень хорошо прилипает к рукам и очень плохо потом с них удаляется, всегда следует использовать при работе с ней защитные перчатки.

Перед применением баллон необходимо обязательно встряхнуть для того, чтобы находящиеся в нем компоненты хорошо перемешались. Если этого не сделать, качественную пену на выходе получить не удастся.

Поскольку пена полимеризуется в присутствии влаги, перед нанесением пены обрабатываемую поверхность необходимо увлажнить. При отрицательных температурах влага может замерзнуть на поверхности. Поэтому увлажнят следует небольшие участки поверхности и сразу же их запенивать, не давая влаге замерзать.

Вертикальные швы рекомендуется запенивать снизу вверх – так легче и удобнее.

При нанесении пены обязательно следует учитывать величину ее вторичного расширения и стараться нанести пену так, чтобы после полимеризации не было необходимости ее подрезать. Дело в том, что на поверхности пены образуется достаточно плотная пленка, снижающая гигроскопичность пены. Если ее срезать, способность пены впитывать влагу увеличится.

После нанесения пены шов следует еще раз увлажнить для более быстрой и качественной полимеризации.

Монтажная пена разрушается под воздействием ультрафиолета, поэтому после отверждения шов нужно обязательно защитить штукатуркой или иным способом.

температура применения морозостойкой пены для наружных работ, технические характеристики

Монтажная пена – материал, широко используемый в строительстве или ремонте. Производители выпускают множество видов таких составов. К одному из самых распространенных относят «зимний» герметик. Его можно применять на морозе при низких показателях влажности воздуха.

Благодаря таким материалам нет необходимости останавливать строительные работы в условиях отрицательных температур. Перед использованием морозостойкой пены следует изучить ее свойства, технические характеристики и особенности применения.

Чем отличается от летней?

Летняя и зимняя монтажные пены реализуются в аэрозольной емкости. Их главный компонент – жидкий полимер. В процессе подачи состава при воздействии влаги он значительно расширяется. С течением времени вещество полимеризируется и твердеет, образуя крепкую массу.

Поздней осенью, зимой и ранней весной не допускается использование летних составов, поскольку при падении температуры до +5 градусов они становятся непригодными. Дело в том, что в холодное время года производительность герметика снижается: при морозах объем пены может «упасть» до минимума.

Использование не предназначенных для холодов материалов, зачастую приводит к определенным проблемам:

  • состав не достигает нужной консистенции;
  • не может сформироваться необходимая герметическая основа;
  • полученная пенообразная масса сразу же при застывании раскрашивается.

Наглядно о разнице зимней и летней пены смотрите в следующем видео.

Используя морозоустойчивые составы можно избежать этих проблем. Зимние герметики, в отличие от летних, разрешено использовать при отрицательных температурах. Это возможно благодаря уникальному химическому составу веществ. Они содержат специализированные добавки, позволяющие веществу полимеризироваться в мороз в условиях низкой влажности воздуха.

Причем в летнее время зимние пены сохраняют свою эффективность.

Технические характеристики

На рынке представлено множество разновидностей зимних герметиков, отличающихся по стоимости, качеству и условиями применения. Большинство составов предназначено для использования при температуре от -10 до +35 градусов. Некоторые производители выпускают материалы, с которыми можно работать до минус 30 градусов.

Рассмотрим другие технические характеристики зимней монтажной пены:

  • Объем пены, измеряемый в литрах. Из баллона 300 мл возможно получить до 30 литров герметизирующей массы. Этот показатель всегда указывается производителем на упаковке. Однако стоит учитывать, что с понижением температуры объем материала будет снижен.
  • Первичное расширение. Данная характеристика отвечает за процент увеличения объема вещества. Этот показатель у разных герметиков колеблется в пределах от 30 до 50%.
  • Пористость. У качественных герметизирующих масс пористость может достигать 88%.
  • Адгезия. Способность пены «сцепляться» с основанием. Как правило, все зимние составы обладают хорошей адгезией. Они прилипают к бетону, дереву, кирпичу, металлу и другим материалам (кроме тефлона, силикона, полипропилена).
  • Вязкость. От этого показателя зависит консистенция массы. Чем выше вязкость, тем лучше герметик будет «схватываться» с поверхностью и меньше стекать с основания.
  • Время высыхания. У зимних пен время высыхания составляет от 4 до 10 часов. Этого периода хватает, чтобы на поверхности вспененной массы образовалась корочка. В течение суток слой не рекомендуется трогать до его полного высыхания. В противном случае велики риски нарушения целостности оболочки.
  • Усадка. У качественных материалов этот показатель не должен превышать 4%.

При большей усадке существует вероятность разрыва застывшей пены и ее деформации, что ведет к некачественной герметизации.

На упаковках некоторых составов указаны дополнительные технические параметры. Они указывают на то, как будет работать герметик в определенных условиях (например, при воздействии высоких температур или силовых нагрузок).

Виды

Монтажная пена классифицируется по нескольким признакам. Она бывает профессиональной и бытовой. Для первой необходимо использование специального пистолета-дозатора, в то время как бытовые герметики укладываются при помощи специальной пластиковой трубки, идущей в комплекте с материалом. Основное различие между этими двумя составами заключается во вторичном расширении. У профессионального герметика этот показатель гораздо ниже, чем у бытового.

А также пена классифицируется в соответствии с классом горючести:

  • огнеупорная В 1;
  • самозатухающая В 2;
  • горючая В 3.

Огнеупорная – пена спецназначения. Она зачастую применяется при монтаже противопожарных дверных проемов, для герметизации швов при возведении каминов, печей и иного оборудования для отопления помещения. Огнеупорный состав способен выдерживать натиск огня на протяжении 6 часов. Все это время пена не будет гореть или плавиться.

Главное визуальное отличие огнестойкого герметика от обычного – это цвет. У горючих масс он бывает белым или желтым, у негорючих преобладает розовый оттенок.

Сфера применения

За счет высокого показателя расширения и хорошей адгезии к практически любым материалам морозостойкая монтажная пена может использоваться как для внутренних, так и для наружных работ. Благодаря простоте использования и надежности ее часто применяют не только мастера-любители, но и профессиональные строители.

Монтажный герметик может потребоваться при установке дверей и окон, для изоляции трубопроводов или кабельных каналов. Материал также можно использовать в качестве уплотнителя при заделывании щелей, трещин, стыков, выбоин или пустот внутри или снаружи помещения.

Иногда пена применяется как утеплитель для повышения теплоизоляции отапливаемых или неотапливаемых объектов.

Монтажный герметик можно применять как крепежное средство для фиксации настенных панелей или листов утеплителя. Благодаря использованию материала также можно монтировать настенные шумоизоляционные изделия.

Как пользоваться?

До начала использования баллона с герметиком его необходимо выдержать в теплом помещении не менее 12 часов. Перед применением состава необходимо подготовить поверхность: очистить ее от грязи, пыли, снега или наледи. Допустимо смачивание основания водой при помощи пульверизатора.

При герметизации швов или стыков баллон необходимо держать вверх дном. При этом щели рекомендуется заполнять примерно на 1/3 их объема. Перед применением необходимо не забывать интенсивно встряхивать баллон в течение 20 секунд. Такая манипуляция будет способствовать быстрому смешиванию компонентов и повышению выхода герметизирующей массы.

При необходимости пену можно нанести в несколько слоев. Однако последующий можно укладывать только при затвердении предыдущего (для этого должно пройти не менее суток). Нанесенную массу необходимо укрыть от снега или солнечных лучей.

Пренебрежение этой рекомендацией может привести к снижению защитных свойств изоляционного шва.

Правила хранения

Хранить тару с монтажной пеной необходимо клапаном вверх при температуре, указанной производителем (допустимый температурный диапазон составляет от +5 до +30 градусов). При несоблюдении данных условий герметик может утратить эксплуатационные свойства, заявленные производителем.

Если баллон долгое время находился на морозе, его следует оставить в тепле на сутки. Но также допускается прогревание емкости при помощи горячей воды (температура не должна превышать 50 градусов).

Производители

Изготовлением зимней монтажной пены занимаются отечественные и зарубежные компании.

Лидирующие позиции по продажам занимает продукция нескольких торговых марок:

  • Soudal. Один из крупнейших производителей аэрозольных герметиков. Поставляет различные виды монтажных пен на протяжении 20 лет. Составы Soudal отличаются превосходными техническими и эксплуатационными характеристиками, однородной консистенцией, высокой степенью теплоизоляции.
  • Penosil. Материалы этой торговой марки обладают хорошей адгезией с большинством материалов, малым вторичным расширением, большим выходом массы.
  • «Технониколь». Продукция отечественного производства. Однокомпонентные материалы удобны в использовании, обладают хорошими техническими параметрами, но при этом стоят недорого.
  • Tytan Professional. Бытовые зимние герметики, предназначенные для использования при температуре окружающей среды до -20 градусов. Экологичные материалы, отличающиеся абсолютной безопасностью для здоровья даже в момент нанесения.

Перед тем как купить монтажную пену, следует изучить ее технические характеристики и условия эксплуатации. При необходимости можно обратиться за информационной поддержкой к продавцу-консультанту. Он поможет разобраться в обширном выборе строительной продукции исходя из требований и финансовых возможностей покупателя.

О том, как ведёт себя монтажная пена на морозе, смотрите в видео ниже.

Как выбрать пену монтажную: основные виды и производители

Содержание:
Как выбрать пену монтажную: четыре разновидности пены и их назначение
Основные свойства монтажной пены, на которые следует обратить внимание
Какую монтажную пену приобрести: производители герметиков

Основным критерием выбора монтажной пены является ее назначение – существует достаточно много разновидностей этого материала, которые предназначены для выполнения того или иного вида работ. Именно поэтому вопрос, как выбрать монтажную пену, нужно рассматривать всесторонне. В этой статье от сайта stroisovety.org мы изучим все эти разновидности, ознакомимся с их назначением и особенностями, что даст вам возможность не ошибиться в выборе и приобрести именно ту монтажную пену, которая вам необходима.

Монтажная пена Макрофлекс фото

Как выбрать пену монтажную: четыре разновидности пены и их назначение

Сегодня практически все знают о существовании профессиональной и бытовой монтажной пены, но не многие догадываются о том, что этот материал может различаться в зависимости от его назначения. Существуют четыре основных вида монтажной пены, которые имеют кардинальные отличия. О них и поговорим дальше.

  1. Пена универсальная. Она продается практически во всех строительных магазинах, как в бытовой, так и в профессиональной упаковке и имеет широкий спектр применения. Ее используют для герметизации практически любых швов, трещин, установки дверей, окон многих других конструкций. Чего-то особенного о ней сказать нельзя – самая обычная пена. При выборе подобного материала нужно обратить внимание на две вещи – это плотность и наполняемость баллона. Плотность у различного производителя может разниться, но в среднем для профессиональной пены она составляет от 1525 кг/м³ и выше, а у бытовых не превышает 2535 кг/м³. Эта разница заметна при застывании пены – низкая плотность дает крупные пузырьки. Что же касается наполнения баллона, то здесь нужно читать упаковку.

    Виды монтажной пены

  2. Пена с низким давлением. Это специализированная профессиональная пена – ее отличает низкое давление в процессе полимеризации герметика. Характеристики этой монтажной пены таковы, что она ничего не выдавливает и не выжимает. Даже если с ее помощью устанавливать дверные коробки из МДФ, которые, как правило, очень чувствительны к давлению пены, то можно не использовать распорки и вставки между дверью и коробкой. Просто поставили, запенили, и после высыхания коробка ни на миллиметр не поменяет своего положения. Ярким представителем такого полиуретанового герметика является монтажная пена «Макрофлекс 65».
  3. Морозостойкая пена. При полимеризации стандартной пены, проходящей при минусовых температурах, свойства этого материала несколько изменяются – она становится хрупкой и осыпается при малейшем прикосновении. По сути, это уже не герметик, и функцию свою он не выполняет. Для работы при минусовых температурах существует морозостойкая полиуретановая монтажная пена – она имеет предел устойчивости к холоду, который в среднем составляет -10˚C. Отдельные экземпляры позволяют выполнять работы по герметизации при температуре до -25˚C.
  4. Огнеупорная монтажная пена. В большинстве случаев данный тип монтажной пены используется при установке противопожарных дверей – такая пена имеет класс устойчивости к огню В1, что гарантирует ее невозгорание и неоплавление в течение 6час.

    Пена монтажная огнеупорная фото

Еще есть клей пена – это уже не герметик, но монтажной пеной все-таки считается. В большинстве случаев такая пена применяется для утепления домов – с ее помощью приклеивают пенопластовые плиты. Существуют и другие подобные составы, назначение которых немного иное – вернее то же, но приклеивают с его помощью абсолютно другие материалы. В принципе, такая монтажная пена является практически универсальной, так как имеет высокий уровень адгезии к любым материалам.

Клей пена фото

Основные свойства монтажной пены, на которые следует обратить внимание

Подходя к вопросу выбора полиуретанового герметика, следует знать основные его свойства. Дело в том, что в большинстве случаев от них зависит не только качество герметизации, но и удобство в работе.

  1. Коэффициент расширения – от этого свойства во многом зависит качество герметизации. Расширяясь, полиуретановый герметик монтажная пена заполняет собой все, даже самые маленькие трещины и неровности шва. И чем выше этот показатель, тем надежнее будет производиться герметизация. Как правило, у бытовой монтажной пены степень расширения варьируется от 10 до 60%. Если говорить о профессиональной пене, то у нее степень расширения составляет 180-300%. На этот показатель может оказывать влияние масса внешних факторов – это температура баллона с пеной, скорость выхода ее из трубки и даже опыт человека, использующего герметик.
  2. Плотность пены – о ней мы уже говорили выше, поэтому подробно останавливаться на этом вопросе не будем. Добавим только то, что низкая плотность не всегда есть показателем ее качества – для одних целей нужна одна плотность герметика, а для других другая.

    Как выбрать пену монтажную

  3. Усадка – если этот показатель превышает 5%, то это отнюдь не качественная пена. При такой усадке пена может деформироваться в процессе полимеризации и образовывать разрывы – в результате вы получите некачественную герметизацию соединения. Чем меньше коэффициент усадки, тем лучше.
  4. Цвет монтажной пены – увидеть его можно только после того, как баллон будет вскрыт. Действительно качественная монтажная пена имеет светло-желтый оттенок, а более темный герметик говорит о том, что она начала разрушаться, даже не начав процесс полимеризации.

    Характеристики монтажной пены

  5. Адгезия. Пена способна прилипать практически к любым материалам, но, как и везде, здесь есть исключение – это инертные материалы. Измеряется адгезия в мПа и составляет она для монтажной пены 0,4-0,48мПА – это достаточно высокий показатель, увеличить который можно путем увлажнения герметизируемой поверхности.

Качественная монтажная пена, обладающая всеми вышеуказанными свойствами, в полной мере должна прилипать к любой поверхности и удерживаться на ней. Если это не так, то работа с герметиком превратится в настоящую проблему.

Какую монтажную пену приобрести: производители герметиков

Подходя к вопросу, какая монтажная пена лучше, особое внимание следует обратить на производителей, во власти которых находится качество этого строительного материала. На сегодняшний день полиуретановый герметик производит достаточно большое количество компаний, но действительно качественный материал этого типа выпускают только некоторые – их можно сосчитать на пальцах.

  1. Компания Henkel, производящая полиуретановый герметик под эгидой торговой марки Makroflex, готова предложить вам огромный выбор всевозможной пены.
  2. Bison International, занимающаяся производством исключительно герметиков.
  3. Den Braven.
  4. Международный концерн Tremco Illbruck, производящий небезызвестные герметики Soudal.
  5. Компания Selena Group, выпускающая такую продукцию, как Tytan и Hauser.
  6. Эстонские компании Bau Master и Domos .
  7. Турецкая компания Okyanus Kimya и ее торговая марка Soma Fix.
  8. И наш производитель «Герметик-Трейд», который изготавливает такую продукцию, как CHIP, «Мастер Гвоздь» и Putech.

    Производители монтажной пены

В общем, выбирать есть из чего, но главное, чтобы этот выбор был вполне осознанным. Учитывать нужно все: и производителя, и характеристики, и даже условия эксплуатации и использования. По-другому вопрос, как выбрать пену монтажную, не решить.

Автор статьи Александр Куликов

Свойства пены

Чем одна пена отличается от другой

Свойства пены: чем одна пена отличается от другой?

Опубликовано Автор: Дэйв Шерман, 21 августа 2018 г.
Решения для эластомерных материалов

Этот пост (первоначально Дэйв Шерман) появился в блоге PORON Cushioning. Обновлено 21.08.2018

Пена — это пена — это пена, верно?

Одним словом (или тремя) не так уж и много.Наши клиенты часто удивляются, узнав, что все материалы PORON ® Comfort представляют собой пенополиуретан с открытыми порами, особенно когда они привыкли видеть пенополиуретан с закрытыми порами или пенополиуретан с закрытыми порами.

Пенопласт с открытыми порами обладает многими преимуществами и свойствами, которых нет у пенопластов с закрытыми порами. Одним из самых важных является то, что он обеспечивает наилучшую устойчивость к остаточной деформации при сжатии (C-Set) или, для поклонников непенного материала, сопротивление разрушению после многократного использования. По сути, это означает, что пена очень прочная и не разрушается и не теряет своих амортизирующих свойств после многократного использования.В мире обуви это означает постоянную посадку, форму и функциональный уровень, а также сохраняет внешний вид и ощущение обуви в том виде, в котором она была разработана.

Пены с закрытыми порами и пены с открытыми порами

Вот еще кое-что, что нужно учесть …

Пена с закрытыми порами:

Пены с закрытыми порами или пены EVA состоят из полных пузырьков воздуха. Пузырьки воздуха задерживаются в пене с ячеистыми стенками вокруг, предотвращающими выход воздуха. Сгруппированные вместе, как мыльные пузыри в пенной ванне, воздушные карманы имеют решающее значение для функционирования пены.Когда пена сжимается, внутри пузырьков находится воздух, что позволяет пене возвращаться обратно при снятии давления. По этой причине они часто используются в стельках для обуви и спортивной набивке, где прочность и защита являются ключевыми.

Доказательство этого свойства может быть продемонстрировано с помощью теннисного мяча. Теннисные мячи, как известно, подпрыгивают из-за того, что внутри них находится воздух. Но как только теннисный мяч использовался неоднократно, воздух начинает просачиваться, в результате чего мяч теряет упругое сопротивление.

Применяя эту аналогию к пенам с закрытыми порами, это точка, в которой пена начинает расплющиваться или «брать набор» (помните всю эту штуку с C-Set?). Вот почему стельки или набивка, сделанные исключительно из пены с закрытыми порами, со временем становятся менее удобными или менее защищающими при следующем ударе.

Пена с открытыми ячейками: Пены с открытыми ячейками

имеют свои плюсы и минусы. Материалы PORON Comfort состоят из открытых ячеек, соединенных порталами, которые пропускают воздух между ними.

Это означает, что свойства этих материалов зависят не от пузырьков воздуха, а от свойств материалов в их стенках ячеек. Из-за этого они реагируют на давление аналогично пружине, обязательно возвращаясь в исходное положение после каждого сжатия благодаря свободному движению воздуха через ячейки. Структура с открытыми ячейками также позволяет пропускать пары влаги, улучшая воздухопроницаемость и сохраняя окружающую среду обуви.

Доступный во множестве запатентованных рецептур, материалы с открытыми порами PORON Comfort разработаны для обеспечения определенной функциональности, обеспечивая нужный уровень поддержки и воздухопроницаемости для конечного пользователя в течение дня и в течение всего срока службы обуви.

Итак, какой из них подходит для вашего приложения?

У каждого типа пенопласта есть свои преимущества и недостатки, которые следует учитывать при принятии решения, какой из них использовать. Пенопласт с закрытыми ячейками может быть очень легким, так как их ячеистые стенки могут быть очень тонкими, но обычно они жесткие из-за несжимаемости воздуха внутри них.Они также могут лучше сопротивляться проникновению жидкости, чем материалы с открытыми порами.

Пенопласт

с открытыми ячейками, помимо того, что он устойчив к взятию набора, более мягкий и легче поддается сжатию. Их ячейки также обеспечивают воздухопроницаемость и лучший показатель отклонения силы сжатия (CFD) или, другими словами, показатель их прочности или несущей способности.

Иногда правильный пенный раствор представляет собой комбинацию материалов с закрытыми и открытыми порами. Используя лучшее из обоих миров, некоторые конструкции покрывают пену с закрытыми порами и пену с открытыми порами, что позволяет более гибкому слою с открытыми порами (например, PORON Comfort) соответствовать форме, заданной в материале с закрытыми порами (например, EVA). .

В приведенной ниже таблице перечислены преимущества каждого типа пены:

Свойства пены Открытая ячейка Закрытая ячейка Обмер недвижимости
Отклонение силы сжатия (CFD) Мягкость / податливость
Сопротивление при сжатии Срок службы недвижимости
Антимикробное средство * Интегральное покрытие
Воздухопроницаемость МВТР-Да / Нет
Водопоглощение % Поглощение через некоторое время
Мойка Циклы при настройке
Формовка
Гибкость

* Доступна дополнительная защита

Помните об этих различиях, поскольку они относятся к вашему применению и дизайну.Если ваше приложение требует меньшего веса и удобства мытья, выберите пену с закрытыми порами. Однако, если долговечность и надежность имеют решающее значение для вашего приложения, выберите в качестве решения материалы PORON Comfort.

Теги:
Обувь, Безопасность при ударах, Промышленное производство

Комментарии

Привет, Я производю и продаю запатентованное покрытие для кистей под названием Brushaper (www.brushaper.com). Основная часть крышки состоит из ламинированной пены с открытыми ячейками.Технические характеристики следующие: • Open Cell Foam (воздухопроницаемый). 100% пенополиуретан. Плотность: 65 ± 5 кг / м3 • Ламинированная ткань (2 варианта) с обеих сторон: Нейлон — 100% нейлон 70D Лайкра — 15% спандекс / 85% нейлон • Эластичный (4 направления), воздухопроницаемый, впитывающие свойства. • Толщина: около 3 мм. • Черный цвет Есть ли у вас возможности изготовления такого продукта? Я с нетерпением жду вашего ответа.
(Отправлено Энди Оливером 22 апреля 2021 г.)

Вернуться в блог

Свойства пены — PetroWiki

Объемная пена, обнаруженная в головке пивного стакана или в сочетании с моющими растворами, представляет собой метастабильную дисперсию газа относительно большого объема в непрерывной жидкой фазе, которая составляет относительно небольшой объем. пены.Альтернативное определение объемной пены — это «скопление пузырьков газа, отделенных друг от друга тонкими пленками жидкости». [1] В большинстве классических пен содержание газа довольно высокое (часто от 60 до 97% объема). В объемной форме, например, в наземных сооружениях и трубопроводах нефтепромыслов, пена образуется, когда газ контактирует с жидкостью в присутствии механического перемешивания. Используемый здесь термин «объемные пены» — это пены, которые существуют в контейнере (например, в бутылке или трубе), для которых объем контейнера намного больше, чем размер отдельных пузырьков пенного газа.

Общая природа пен

Капиллярные процессы контролируют образование и свойства пен в пористых средах. Пены, используемые для улучшения соответствия, представляют собой дисперсии микрогазовых пузырьков, как правило, с диаметром / длиной в диапазоне от 50 до 1000 мкм. Пена в пористой среде существует в виде отдельных микрогазовых пузырьков, находящихся в непосредственном контакте со смачивающей жидкостью стенок поры. Эти микрогазовые пузырьки разделены жидкими пластинками, которые перекрывают стенки пор и образуют жидкую перегородку в масштабе поры между пузырьками газа.Пена распространяется в большинстве пород матричного коллектора в виде цепочки пузырьков, в которой каждый газовый пузырь отделен от следующего жидкой пленкой из ламелей. Во многих случаях отдельные пузыри пены в породе матрицы коллектора могут иметь длину множества пор. Gauglitz et al. определили структуру пены в пористой среде как «дисперсию газа в непрерывной жидкой фазе с по крайней мере некоторыми путями газового потока, прерываемыми тонкими пленками жидкости, называемыми ламелями». [2]

Все пены, обсуждаемые на этой странице, и все пены, которые используются для улучшения соответствия, содержат поверхностно-активные вещества, растворенные в жидкой фазе пены для стабилизации газовой дисперсии в жидкости.Газовая фаза пены может включать как классический газ, так и сверхкритический газ, такой как сверхкритический / плотный CO 2 . За исключением специально отмеченного, все пены, обсуждаемые в этой главе, которые используются для улучшения соответствия требованиям нефтяных месторождений, являются пенами на водной основе. Эта глава ограничивается в первую очередь обсуждением пен на водной основе, стабилизированных поверхностно-активными веществами, для использования в улучшении соответствия во время операций по добыче нефти.

На рис. 1 показан двухмерный срез обобщенной системы объемной пены. [3] Тонкие пленки жидкости, разделяющие пузырьки пенного газа, определяются как ламели пены. Соединение трех ламелей газового пузыря под углом 120 ° называется границей плато. В устойчивых объемных пенах сферические пузырьки газа пены превращаются в ячейки пены, многогранники, разделенные почти плоскими тонкими пленками жидкости. Такая пена называется сухой пеной. Ячейки пены многогранников почти, но не совсем, являются правильными додекаэдрами. В трех измерениях четыре границы плато ячейки пены встречаются в точке под тетраэдрическим углом примерно 109 °. [3]

  • Рис. 1 — Обобщенный двухмерный срез системы объемной пены.

Пены в пористых средах обычно имеют пузырьки, размер которых равен или больше размера пор. Пена существует в пористой среде резервуар-порода в виде цепочек пузырьков, где граница плато пластин пены формируется на стенке поры и имеет, для статической нетекучей пены в теле поры, угол около 90 ° между жидкими пластинами и порой. стена.

Пенообразователи

Поверхностно-активные вещества являются необходимым третьим ингредиентом, необходимым для образования пен, обсуждаемых в этой статье. Понимание основ химии поверхностно-активных веществ важно при выборе подходящего поверхностно-активного вещества для конкретного применения пенопласта на нефтяных месторождениях.

Молекула поверхностно-активного вещества содержит в одной молекуле как полярный, так и неполярный сегменты. Полярный или гидрофильный сегмент молекулы поверхностно-активного вещества имеет сильное химическое сродство к воде.Неполярный или липофильный сегмент имеет сильное химическое сродство к неполярным углеводородным молекулам. Когда вода и масло или вода и газ находятся в контакте, молекулы поверхностно-активного вещества стремятся разделиться на поверхность раздела нефть / вода или газ / вода и уменьшить межфазное натяжение границы раздела. На рис. 2 изображена молекула поверхностно-активного вещества, находящаяся на границе раздела масло / вода. Разделение молекулы поверхностно-активного вещества на границу раздела газ / вода и последующее снижение межфазного натяжения является основным механизмом, с помощью которого поверхностно-активные вещества стабилизируют дисперсии газа в воде с образованием метастабильной пены.

  • Рис. 2 — Изображение молекулы полимера, находящейся на границе раздела масло / вода.

Поверхностно-активные вещества подразделяются на четыре типа, которые различаются по химическому составу полярной группы молекулы поверхностно-активного вещества.

  • Анионики — Полярная группа анионного поверхностно-активного вещества представляет собой соль (или, возможно, кислоту), где полярная анионная группа непосредственно присоединена к молекуле поверхностно-активного вещества, а противодействующий и поверхностно-неактивный катион (часто натрий) сильно разделен в водной среде. сторона границы раздела нефть / вода или газ / вода.Анионные поверхностно-активные вещества часто используются в пенопластах на нефтяных месторождениях, потому что они являются относительно хорошими поверхностно-активными веществами, обычно устойчивыми к удерживанию, довольно химически стабильными, доступными в промышленных масштабах и относительно недорогими.
  • Катионы — Полярная группа катионного поверхностно-активного вещества представляет собой соль, в которой полярная катионная группа непосредственно присоединена к молекуле поверхностно-активного вещества, а противодействующий и поверхностно-неактивный анион сильно разделен на водную сторону границы раздела масло / вода или газ / вода. . Катионные поверхностно-активные вещества нечасто используются в пенопластах для нефтепромыслов, поскольку они имеют тенденцию сильно адсорбироваться на поверхностях глин и песка и относительно дороги.
  • Неионогенные вещества — Полярная группа неионогенного поверхностно-активного вещества представляет собой не соль, а скорее химическое вещество, такое как спиртовая, эфирная или эпоксидная группа, которая усиливает свойства поверхностно-активного вещества путем создания контраста электроотрицательности. Неионные поверхностно-активные вещества менее чувствительны к высокой солености и могут быть относительно недорогими.
  • Амфотерные вещества — Амфотерные поверхностно-активные вещества содержат две или более характеристики перечисленных выше химических типов поверхностно-активных веществ.

Рис. 3 иллюстрирует химическую структуру выбранных поверхностно-активных веществ.В пределах любого из типов поверхностно-активных веществ могут быть существенные различия в их химическом составе и характеристиках. Химический состав, размер и степень разветвления липофильного сегмента молекулы поверхностно-активного вещества могут иметь большое влияние на характеристики пена-поверхностно-активное вещество, так же как и химия гидрофильной части молекулы поверхностно-активного вещества. Даже небольшие и тонкие различия в липофильном сегменте могут резко изменить свойства поверхностно-активного вещества. Большинство коммерческих продуктов с поверхностно-активными веществами содержат такое распределение типов и размеров поверхностно-активных веществ, которое дополнительно усложняет поверхностно-активные вещества, используемые в пенах, улучшающих конформность.

  • Рис. 3 — Типы химического состава ПАВ.

При использовании пены в сочетании с заводнением пара или любым применением с повышенными пластовыми температурами важно выбрать поверхностно-активное вещество, которое будет термически стабильным в течение необходимого срока службы пены в резервуаре. Исторически сложилось так, что альфа-олефиновые поверхностно-активные вещества и поверхностно-активные вещества на основе нефтяных сульфонатов наиболее широко использовались в пенах, применяемых в высокотемпературных (> 170 ° F) коллекторах.Сульфатные поверхностно-активные вещества иногда использовались в низкотемпературных (<120 ° F) резервуарах.

Альфа-олефинсульфонаты оказались одним из самых популярных и широко используемых химикатов поверхностно-активных веществ для использования в пенах. Это во многом привело к их совокупным хорошим характеристикам пенообразования, относительно хорошей солеустойчивости, хорошей термической стабильности, доступности и относительно низкой стоимости. Было предложено, чтобы смеси с различным химическим составом поверхностно-активных веществ обеспечивали преимущества при составлении соответствующих пен. [4]

Использование фторированных поверхностно-активных веществ в формулах пен показало некоторые перспективы. [5] Сообщалось, что фторированные поверхностно-активные вещества, используемые с другими поверхностно-активными веществами, часто улучшают устойчивость пены к маслу. [6] Фторированные поверхностно-активные вещества не нашли широкого применения в полевых условиях пенопластов в основном из-за их относительно высокой стоимости.

Свойства пены

Несколько свойств, важных для характеристики объемной пены, которая может присутствовать в бутылке, — это качество пены, текстура пены, распределение пузырьков по размерам, стабильность пены и плотность пены.Качество пены — это объемный процент газа в пене при заданном давлении и температуре. Качество пены может превышать 97%. Объемные пены, имеющие достаточно высокое качество пены, так что ячейки пены состоят из многогранных жидких пленок, называются сухими пенами. [3] Пены, улучшающие эксплуатационные характеристики нефтяных месторождений, обычно имеют свойства пены в диапазоне от 75 до 90%. При распространении через пористую среду подвижность многих пен уменьшается по мере увеличения качества пены до верхнего предела стабильности пены с точки зрения качества пены (верхний предел часто составляет> 93% качества пены).При работе с паровой пеной на месторождениях под качеством пара понимается массовая доля воды, которая превращается в пар.

Текстура пены является мерой среднего размера пузырьков газа. Как правило, по мере того, как текстура пены становится более тонкой, пена будет иметь большее сопротивление течению в матричной породе.

Распределение пузырьков по размерам — это мера распределения пузырьков газа по размерам в пене. При сохранении всех других переменных постоянными объемная пена с широким распределением размеров газовых пузырьков будет менее стабильной из-за диффузии газа от маленьких к большим пузырькам газа.Сопротивление, придаваемое пеной потоку жидкости в пористой среде, будет выше, когда размер пузырьков относительно однороден. [3]

Стабильность пены на водной основе зависит от химических и физических свойств стабилизированной поверхностно-активным веществом водной пленки, разделяющей пузырьки газа пены. Пены — метастабильные образования; следовательно, вся пена в конечном итоге разрушится. Разрушение пены является результатом чрезмерного утончения и разрыва жидких пленок пены со временем, а также диффузии газа из более мелких пузырьков в более крупные пузырьки, что приводит к увеличению размера пузырьков пены.Внешние воздействия, такие как контакт с пенообразователем (например, нефтью или неблагоприятной соленостью), контакт с гидрофобной поверхностью и местное нагревание, могут разрушить структуру пены.

Факторы, влияющие на стабильность ламелей пены, включают гравитационный дренаж, капиллярное всасывание, поверхностную эластичность, вязкость (объемную и поверхностную), электрическое двухслойное отталкивание и стерическое отталкивание. [3] Стабильность пены, находящейся в пористой среде, требует целого ряда дополнительных соображений, которые рассматриваются в следующем подразделе этой главы.

Одной из привлекательных особенностей пен для использования в операциях газового заводнения является относительно низкая эффективная плотность пен. (В качестве уравновешивающего примечания: пены для улучшения соответствия, содержащие сверхкритический CO 2 , могут достигать плотности, превышающей плотность некоторых сырой нефти.) Особенность низкой плотности имеет положительные последствия для пен, используемых как при заводнении с контролем подвижности, так и для блокирования поток жидкости. Низкая эффективная плотность приводит к тому, что пена выборочно размещается выше в интервале коллектора, где наиболее вероятно имеет место поток заводнения или добыча газа.

Для технического пояснения, поток пены в пористой среде фактически происходит в виде цепочки пузырьков газа, разделенных жидкими пластинками. Таким образом, строго говоря, течение пены в пористой среде происходит в виде двухфазного потока, а именно потока пузырьков газа и потока жидких ламелей. С этой более технически правильной точки зрения, именно низкая плотность газовой фазы способствует размещению пены выше в резервуаре. Во время заводнения газом, таким как заводнение паром или CO 2 , пены с низкой плотностью, используемые для контроля подвижности, хорошо подходят для решения и уменьшения общей проблемы подавления газа, которая часто препятствует контакту газа, добываемого закачиваемым газом, с нефтенасыщенностью ниже в вертикальный интервал коллектора.Выборочный контроль подвижности с помощью пен с низкой плотностью в верхней части коллектора заставит больше вытесняющего текучего газа контактировать с нефтенасыщенными секциями в нижней части коллектора.

Низкая плотность пены, используемой во время газоблокирующей обработки, будет иметь тенденцию к размещению пены выше в интервале коллектора, где наиболее вероятно возникновение наступательного потока газа и добычи. В этом отношении пены для использования в обработках блокирующим агентом хорошо подходят для обработки газового конуса и проблем образования газового конуса, возникающих в добывающих скважинах.Кроме того, вытеснение газа в относительно однородном пласте с хорошей вертикальной проницаемостью вызывает чрезмерную добычу газа в верхнем интервале добывающих скважин. Газоблокирующая пена с низкой плотностью способствует удобному размещению вокруг таких проблемных скважин.

При рассмотрении потенциальной выгоды от низкой плотности во время укладки пены для операции по повышению соответствия необходимо тщательно учитывать относительные эффекты сил тяжести по сравнению с силами вязкости, которые действуют во время укладки пены.То есть необходимо оценить горизонтальный градиент перепада давления по сравнению с вертикальным градиентом перепада давления, который пена будет испытывать во время ее потока и / или размещения в резервуаре.

Режим впрыска

Для впрыска улучшающих конформность пен используется один из трех четко различающихся режимов:

  • Последовательный впрыск
  • Совместный впрыск
  • Предварительно сформированная пена, созданная на поверхности перед инъекцией.

Последовательная закачка включает попеременную закачку в нефтяной пласт газовой и водной фаз пены.Совместная закачка включает совместную закачку в пласт газовой и жидкой фаз пены. Из-за значительной эффективной вязкости пен и связанной с этим плохой приемистости предварительно сформованных пен первые применения пен, улучшающих конформность, имели тенденцию включать режим последовательного или совместного впрыска. Кроме того, последовательный и совместный впрыск значительно проще реализовать в полевых условиях. Последовательный впрыск также позволяет избежать проблем, связанных с коррозией труб, если газ и пенообразующий раствор образуют коррозионную смесь, такую ​​как пеноматериалы CO 2 .

Концепция, подтвержденная лабораторными данными, заключается в том, что во время последовательного или совместного нагнетания пена будет образовываться на месте в основной породе коллектора. Это утверждение подтверждается ожиданием того, что газ с низкой вязкостью и высокой подвижностью будет иметь тенденцию попадать в водный пенообразующий раствор и образовывать пену на месте.

Тем не менее, есть две серьезные проблемы, связанные с противодействием. Во-первых, когда газ начинает проникать в водный раствор и образовывать пену на месте, вновь образованная пена будет существенно уменьшать последующее попадание газа и отводить последующий поток газа от оставшегося водного пенообразующего раствора, находящегося непосредственно перед первоначально образованной пеной.Это явление приводит к неэффективному и неэффективному использованию вводимых пенных химикатов и жидкостей для образования пены. Во-вторых, в промежуточных и дальних местах ствола скважины может не хватить механической энергии и / или перепада давления для образования пены на месте при использовании обычных пенообразующих растворов. Это особенно важно для пен, содержащих пар, азот и природный газ.

Krause et al. [7] сообщил об относительно обработках пеной в призабойной зоне добывающей скважины, которые применялись на месторождении Прудхо-Бэй для снижения чрезмерного газового фактора, возникающего при добыче реинжектируемого природного газа.Первая обработка включала закачку пенообразующего раствора в резервуар с последующей серией промывок. Считалось, что последующая добыча газа через размещенный пенообразующий раствор, аналогично режиму последовательного нагнетания, вызовет образование газоблокирующей пены на месте. Вторая пенная газоблокирующая обработка включала последовательную закачку пенообразующего раствора и порции азота. Ни одна из этих первых двух обработок пеной газоблокирования не показала снижения газового фактора после обработки.Третья пена, блокирующая газ, представляла собой азотную пену с качеством 65%, которая была предварительно сформирована на поверхности перед закачкой. Эта обработка значительно снизила газовый фактор обработанной производственной скважины в течение нескольких недель. Эти результаты предполагают, что для многих применений пен для природного газа и азота, улучшающих соответствие требованиям, закачка пены с использованием предварительно сформированного режима по сравнению с последовательным впрыском или режимом совместного впрыска приведет к улучшенным характеристикам пены в нефтяном пласте при проведении «околоскважинные» обработки.Если не могут быть приведены убедительные аргументы в пользу противоположного для конкретного применения, пены для большинства применений обработок для улучшения конформности ближнего и промежуточного ствола скважины должны быть предварительно сформированы на поверхности перед закачкой.

Последовательный процесс, также известный как процесс с чередованием воды с газом (WAG), заключающийся в последовательном и многократно чередующемся закачке порций CO 2 и водного вспенивающего раствора, часто предпочтителен при использовании пены CO 2 для целей контроля подвижности во время CO 2 затопление.Это связано с тем, что CO 2 , растворенный в водном растворе поверхностно-активного вещества, образует угольную кислоту, которая вызывает коррозию стальных труб. Из-за низкого поверхностного натяжения CO 2 образование и распространение пены намного более осуществимо (чем пена водяного пара, азота или природного газа) при реалистичных градиентах полевого давления, которые возникают по всему коллектору. [1]

Сообщалось об исследованиях компьютерного моделирования, которые показали, что оптимальная стратегия закачки для преодоления блокировки газа во время операций закачки газа — это попеременная / последовательная закачка отдельных больших пробок газа и вспенивающейся жидкости при максимально допустимом фиксированном значении. давление впрыска. [8] Это исследование ограничивалось закачкой пены в однородный пласт и не учитывало взаимодействие пены с нефтью. Режим закачки поверхностно-активного вещества с чередованием-газом (SAGA) для образования пены с контролем подвижности на месте был предложен для использования при проведении крупных проектов заводнения WAG в резервуарах Северного моря. [9]

Список литературы

  1. 1.0 1.1 Россен, W.R. 1996. Пены для увеличения нефтеотдачи. Пены — теория, измерения и применение , R.K. Prud’homme and S.A. Khan ed., 413-464. Нью-Йорк: Marcel Dekker Inc.
  2. ↑ Гауглиц, П.А., Фридманн, Ф., Кам, С.И. и др. 2002. Образование пены в пористой среде. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 13-17 апреля 2002 г. SPE-75177-MS. http://dx.doi.org/10.2118/75177-MS
  3. 3,0 3,1 3,2 3,3 3,4 Шрамм Л.Л. и Вассмут Ф.1994. Пены: основные принципы. Пены: основы и применение в нефтяной промышленности , изд. Л. Л. Шрамма, 3-45. Вашингтон, округ Колумбия: достижения в области химии, серия 242, American Chemical Soc.
  4. ↑ Llave, F.M. и Olsen, D.K. 1994. Использование смешанных поверхностно-активных веществ для создания пены для контроля подвижности при химическом заводнении. SPE Res Eng 9 (2): 125-132. SPE-20223-PA. http://dx.doi.org/10.2118/20223-PA
  5. ↑ Далланд М. и Ханссен Дж. Э. 1999.Пены с контролем газового фактора: демонстрация эффективности процесса производства пены на масляной основе в модели физического потока. Представлено на Международном симпозиуме SPE по нефтехимии, Хьюстон, Техас, 16-19 февраля 1999 г. SPE-50755-MS. http://dx.doi.org/10.2118/50755-MS
  6. ↑ Маннхард, К., Новосад, Дж. Дж., И Шрамм, Л. Л. 2000. Сравнительная оценка устойчивости пены к маслу. SPE Res Eval & Eng 3 (1): 23-34. SPE-60686-PA. http://dx.doi.org/10.2118/60686-PA
  7. ↑ Краузе Р.Э., Лейн, Р.Х., Кюне, Д.Л. и другие. 1992. Обработка добывающих скважин пеной для увеличения добычи нефти в Прудхо-Бэй. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 22-24 апреля 1992 г. SPE-24191-MS. http://dx.doi.org/10.2118/24191-MS
  8. ↑ Шан, Д. и Россен, W.R. 2002. Оптимальные стратегии впрыска для пены IOR. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 13-17 апреля 2002 г. SPE-75180-MS. http://dx.doi.org/10.2118/75180-MS
  9. ↑ Ханссен, Дж.E. et al. 1995. Закачка SAGA: новый комбинированный процесс IOR для стратифицированных коллекторов. Геологическое общество, Лондон, специальная публикация. 84 : 111-123. http://dx.doi.org/10.1144/GSL.SP.1995.084.01.12

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел, чтобы предоставить ссылки на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Пены

Поведение пены в пористой среде

Пены как средства контроля мобильности

Пены как блокирующие агенты

Области применения пен для повышения соответствия

PEH: полимеры, гели, пены, смолы

Категория

Свойства пены — PetroWiki

Объемная пена, обнаруженная в головке пивного стакана или в сочетании с моющими растворами, представляет собой метастабильную дисперсию газа относительно большого объема в непрерывной жидкой фазе, которая составляет относительно небольшой объем. пены.Альтернативное определение объемной пены — это «скопление пузырьков газа, отделенных друг от друга тонкими пленками жидкости». [1] В большинстве классических пен содержание газа довольно высокое (часто от 60 до 97% объема). В объемной форме, например, в наземных сооружениях и трубопроводах нефтепромыслов, пена образуется, когда газ контактирует с жидкостью в присутствии механического перемешивания. Используемый здесь термин «объемные пены» — это пены, которые существуют в контейнере (например, в бутылке или трубе), для которых объем контейнера намного больше, чем размер отдельных пузырьков пенного газа.

Общая природа пен

Капиллярные процессы контролируют образование и свойства пен в пористых средах. Пены, используемые для улучшения соответствия, представляют собой дисперсии микрогазовых пузырьков, как правило, с диаметром / длиной в диапазоне от 50 до 1000 мкм. Пена в пористой среде существует в виде отдельных микрогазовых пузырьков, находящихся в непосредственном контакте со смачивающей жидкостью стенок поры. Эти микрогазовые пузырьки разделены жидкими пластинками, которые перекрывают стенки пор и образуют жидкую перегородку в масштабе поры между пузырьками газа.Пена распространяется в большинстве пород матричного коллектора в виде цепочки пузырьков, в которой каждый газовый пузырь отделен от следующего жидкой пленкой из ламелей. Во многих случаях отдельные пузыри пены в породе матрицы коллектора могут иметь длину множества пор. Gauglitz et al. определили структуру пены в пористой среде как «дисперсию газа в непрерывной жидкой фазе с по крайней мере некоторыми путями газового потока, прерываемыми тонкими пленками жидкости, называемыми ламелями». [2]

Все пены, обсуждаемые на этой странице, и все пены, которые используются для улучшения соответствия, содержат поверхностно-активные вещества, растворенные в жидкой фазе пены для стабилизации газовой дисперсии в жидкости.Газовая фаза пены может включать как классический газ, так и сверхкритический газ, такой как сверхкритический / плотный CO 2 . За исключением специально отмеченного, все пены, обсуждаемые в этой главе, которые используются для улучшения соответствия требованиям нефтяных месторождений, являются пенами на водной основе. Эта глава ограничивается в первую очередь обсуждением пен на водной основе, стабилизированных поверхностно-активными веществами, для использования в улучшении соответствия во время операций по добыче нефти.

На рис. 1 показан двухмерный срез обобщенной системы объемной пены. [3] Тонкие пленки жидкости, разделяющие пузырьки пенного газа, определяются как ламели пены. Соединение трех ламелей газового пузыря под углом 120 ° называется границей плато. В устойчивых объемных пенах сферические пузырьки газа пены превращаются в ячейки пены, многогранники, разделенные почти плоскими тонкими пленками жидкости. Такая пена называется сухой пеной. Ячейки пены многогранников почти, но не совсем, являются правильными додекаэдрами. В трех измерениях четыре границы плато ячейки пены встречаются в точке под тетраэдрическим углом примерно 109 °. [3]

  • Рис. 1 — Обобщенный двухмерный срез системы объемной пены.

Пены в пористых средах обычно имеют пузырьки, размер которых равен или больше размера пор. Пена существует в пористой среде резервуар-порода в виде цепочек пузырьков, где граница плато пластин пены формируется на стенке поры и имеет, для статической нетекучей пены в теле поры, угол около 90 ° между жидкими пластинами и порой. стена.

Пенообразователи

Поверхностно-активные вещества являются необходимым третьим ингредиентом, необходимым для образования пен, обсуждаемых в этой статье. Понимание основ химии поверхностно-активных веществ важно при выборе подходящего поверхностно-активного вещества для конкретного применения пенопласта на нефтяных месторождениях.

Молекула поверхностно-активного вещества содержит в одной молекуле как полярный, так и неполярный сегменты. Полярный или гидрофильный сегмент молекулы поверхностно-активного вещества имеет сильное химическое сродство к воде.Неполярный или липофильный сегмент имеет сильное химическое сродство к неполярным углеводородным молекулам. Когда вода и масло или вода и газ находятся в контакте, молекулы поверхностно-активного вещества стремятся разделиться на поверхность раздела нефть / вода или газ / вода и уменьшить межфазное натяжение границы раздела. На рис. 2 изображена молекула поверхностно-активного вещества, находящаяся на границе раздела масло / вода. Разделение молекулы поверхностно-активного вещества на границу раздела газ / вода и последующее снижение межфазного натяжения является основным механизмом, с помощью которого поверхностно-активные вещества стабилизируют дисперсии газа в воде с образованием метастабильной пены.

  • Рис. 2 — Изображение молекулы полимера, находящейся на границе раздела масло / вода.

Поверхностно-активные вещества подразделяются на четыре типа, которые различаются по химическому составу полярной группы молекулы поверхностно-активного вещества.

  • Анионики — Полярная группа анионного поверхностно-активного вещества представляет собой соль (или, возможно, кислоту), где полярная анионная группа непосредственно присоединена к молекуле поверхностно-активного вещества, а противодействующий и поверхностно-неактивный катион (часто натрий) сильно разделен в водной среде. сторона границы раздела нефть / вода или газ / вода.Анионные поверхностно-активные вещества часто используются в пенопластах на нефтяных месторождениях, потому что они являются относительно хорошими поверхностно-активными веществами, обычно устойчивыми к удерживанию, довольно химически стабильными, доступными в промышленных масштабах и относительно недорогими.
  • Катионы — Полярная группа катионного поверхностно-активного вещества представляет собой соль, в которой полярная катионная группа непосредственно присоединена к молекуле поверхностно-активного вещества, а противодействующий и поверхностно-неактивный анион сильно разделен на водную сторону границы раздела масло / вода или газ / вода. . Катионные поверхностно-активные вещества нечасто используются в пенопластах для нефтепромыслов, поскольку они имеют тенденцию сильно адсорбироваться на поверхностях глин и песка и относительно дороги.
  • Неионогенные вещества — Полярная группа неионогенного поверхностно-активного вещества представляет собой не соль, а скорее химическое вещество, такое как спиртовая, эфирная или эпоксидная группа, которая усиливает свойства поверхностно-активного вещества путем создания контраста электроотрицательности. Неионные поверхностно-активные вещества менее чувствительны к высокой солености и могут быть относительно недорогими.
  • Амфотерные вещества — Амфотерные поверхностно-активные вещества содержат две или более характеристики перечисленных выше химических типов поверхностно-активных веществ.

Рис. 3 иллюстрирует химическую структуру выбранных поверхностно-активных веществ.В пределах любого из типов поверхностно-активных веществ могут быть существенные различия в их химическом составе и характеристиках. Химический состав, размер и степень разветвления липофильного сегмента молекулы поверхностно-активного вещества могут иметь большое влияние на характеристики пена-поверхностно-активное вещество, так же как и химия гидрофильной части молекулы поверхностно-активного вещества. Даже небольшие и тонкие различия в липофильном сегменте могут резко изменить свойства поверхностно-активного вещества. Большинство коммерческих продуктов с поверхностно-активными веществами содержат такое распределение типов и размеров поверхностно-активных веществ, которое дополнительно усложняет поверхностно-активные вещества, используемые в пенах, улучшающих конформность.

  • Рис. 3 — Типы химического состава ПАВ.

При использовании пены в сочетании с заводнением пара или любым применением с повышенными пластовыми температурами важно выбрать поверхностно-активное вещество, которое будет термически стабильным в течение необходимого срока службы пены в резервуаре. Исторически сложилось так, что альфа-олефиновые поверхностно-активные вещества и поверхностно-активные вещества на основе нефтяных сульфонатов наиболее широко использовались в пенах, применяемых в высокотемпературных (> 170 ° F) коллекторах.Сульфатные поверхностно-активные вещества иногда использовались в низкотемпературных (<120 ° F) резервуарах.

Альфа-олефинсульфонаты оказались одним из самых популярных и широко используемых химикатов поверхностно-активных веществ для использования в пенах. Это во многом привело к их совокупным хорошим характеристикам пенообразования, относительно хорошей солеустойчивости, хорошей термической стабильности, доступности и относительно низкой стоимости. Было предложено, чтобы смеси с различным химическим составом поверхностно-активных веществ обеспечивали преимущества при составлении соответствующих пен. [4]

Использование фторированных поверхностно-активных веществ в формулах пен показало некоторые перспективы. [5] Сообщалось, что фторированные поверхностно-активные вещества, используемые с другими поверхностно-активными веществами, часто улучшают устойчивость пены к маслу. [6] Фторированные поверхностно-активные вещества не нашли широкого применения в полевых условиях пенопластов в основном из-за их относительно высокой стоимости.

Свойства пены

Несколько свойств, важных для характеристики объемной пены, которая может присутствовать в бутылке, — это качество пены, текстура пены, распределение пузырьков по размерам, стабильность пены и плотность пены.Качество пены — это объемный процент газа в пене при заданном давлении и температуре. Качество пены может превышать 97%. Объемные пены, имеющие достаточно высокое качество пены, так что ячейки пены состоят из многогранных жидких пленок, называются сухими пенами. [3] Пены, улучшающие эксплуатационные характеристики нефтяных месторождений, обычно имеют свойства пены в диапазоне от 75 до 90%. При распространении через пористую среду подвижность многих пен уменьшается по мере увеличения качества пены до верхнего предела стабильности пены с точки зрения качества пены (верхний предел часто составляет> 93% качества пены).При работе с паровой пеной на месторождениях под качеством пара понимается массовая доля воды, которая превращается в пар.

Текстура пены является мерой среднего размера пузырьков газа. Как правило, по мере того, как текстура пены становится более тонкой, пена будет иметь большее сопротивление течению в матричной породе.

Распределение пузырьков по размерам — это мера распределения пузырьков газа по размерам в пене. При сохранении всех других переменных постоянными объемная пена с широким распределением размеров газовых пузырьков будет менее стабильной из-за диффузии газа от маленьких к большим пузырькам газа.Сопротивление, придаваемое пеной потоку жидкости в пористой среде, будет выше, когда размер пузырьков относительно однороден. [3]

Стабильность пены на водной основе зависит от химических и физических свойств стабилизированной поверхностно-активным веществом водной пленки, разделяющей пузырьки газа пены. Пены — метастабильные образования; следовательно, вся пена в конечном итоге разрушится. Разрушение пены является результатом чрезмерного утончения и разрыва жидких пленок пены со временем, а также диффузии газа из более мелких пузырьков в более крупные пузырьки, что приводит к увеличению размера пузырьков пены.Внешние воздействия, такие как контакт с пенообразователем (например, нефтью или неблагоприятной соленостью), контакт с гидрофобной поверхностью и местное нагревание, могут разрушить структуру пены.

Факторы, влияющие на стабильность ламелей пены, включают гравитационный дренаж, капиллярное всасывание, поверхностную эластичность, вязкость (объемную и поверхностную), электрическое двухслойное отталкивание и стерическое отталкивание. [3] Стабильность пены, находящейся в пористой среде, требует целого ряда дополнительных соображений, которые рассматриваются в следующем подразделе этой главы.

Одной из привлекательных особенностей пен для использования в операциях газового заводнения является относительно низкая эффективная плотность пен. (В качестве уравновешивающего примечания: пены для улучшения соответствия, содержащие сверхкритический CO 2 , могут достигать плотности, превышающей плотность некоторых сырой нефти.) Особенность низкой плотности имеет положительные последствия для пен, используемых как при заводнении с контролем подвижности, так и для блокирования поток жидкости. Низкая эффективная плотность приводит к тому, что пена выборочно размещается выше в интервале коллектора, где наиболее вероятно имеет место поток заводнения или добыча газа.

Для технического пояснения, поток пены в пористой среде фактически происходит в виде цепочки пузырьков газа, разделенных жидкими пластинками. Таким образом, строго говоря, течение пены в пористой среде происходит в виде двухфазного потока, а именно потока пузырьков газа и потока жидких ламелей. С этой более технически правильной точки зрения, именно низкая плотность газовой фазы способствует размещению пены выше в резервуаре. Во время заводнения газом, таким как заводнение паром или CO 2 , пены с низкой плотностью, используемые для контроля подвижности, хорошо подходят для решения и уменьшения общей проблемы подавления газа, которая часто препятствует контакту газа, добываемого закачиваемым газом, с нефтенасыщенностью ниже в вертикальный интервал коллектора.Выборочный контроль подвижности с помощью пен с низкой плотностью в верхней части коллектора заставит больше вытесняющего текучего газа контактировать с нефтенасыщенными секциями в нижней части коллектора.

Низкая плотность пены, используемой во время газоблокирующей обработки, будет иметь тенденцию к размещению пены выше в интервале коллектора, где наиболее вероятно возникновение наступательного потока газа и добычи. В этом отношении пены для использования в обработках блокирующим агентом хорошо подходят для обработки газового конуса и проблем образования газового конуса, возникающих в добывающих скважинах.Кроме того, вытеснение газа в относительно однородном пласте с хорошей вертикальной проницаемостью вызывает чрезмерную добычу газа в верхнем интервале добывающих скважин. Газоблокирующая пена с низкой плотностью способствует удобному размещению вокруг таких проблемных скважин.

При рассмотрении потенциальной выгоды от низкой плотности во время укладки пены для операции по повышению соответствия необходимо тщательно учитывать относительные эффекты сил тяжести по сравнению с силами вязкости, которые действуют во время укладки пены.То есть необходимо оценить горизонтальный градиент перепада давления по сравнению с вертикальным градиентом перепада давления, который пена будет испытывать во время ее потока и / или размещения в резервуаре.

Режим впрыска

Для впрыска улучшающих конформность пен используется один из трех четко различающихся режимов:

  • Последовательный впрыск
  • Совместный впрыск
  • Предварительно сформированная пена, созданная на поверхности перед инъекцией.

Последовательная закачка включает попеременную закачку в нефтяной пласт газовой и водной фаз пены.Совместная закачка включает совместную закачку в пласт газовой и жидкой фаз пены. Из-за значительной эффективной вязкости пен и связанной с этим плохой приемистости предварительно сформованных пен первые применения пен, улучшающих конформность, имели тенденцию включать режим последовательного или совместного впрыска. Кроме того, последовательный и совместный впрыск значительно проще реализовать в полевых условиях. Последовательный впрыск также позволяет избежать проблем, связанных с коррозией труб, если газ и пенообразующий раствор образуют коррозионную смесь, такую ​​как пеноматериалы CO 2 .

Концепция, подтвержденная лабораторными данными, заключается в том, что во время последовательного или совместного нагнетания пена будет образовываться на месте в основной породе коллектора. Это утверждение подтверждается ожиданием того, что газ с низкой вязкостью и высокой подвижностью будет иметь тенденцию попадать в водный пенообразующий раствор и образовывать пену на месте.

Тем не менее, есть две серьезные проблемы, связанные с противодействием. Во-первых, когда газ начинает проникать в водный раствор и образовывать пену на месте, вновь образованная пена будет существенно уменьшать последующее попадание газа и отводить последующий поток газа от оставшегося водного пенообразующего раствора, находящегося непосредственно перед первоначально образованной пеной.Это явление приводит к неэффективному и неэффективному использованию вводимых пенных химикатов и жидкостей для образования пены. Во-вторых, в промежуточных и дальних местах ствола скважины может не хватить механической энергии и / или перепада давления для образования пены на месте при использовании обычных пенообразующих растворов. Это особенно важно для пен, содержащих пар, азот и природный газ.

Krause et al. [7] сообщил об относительно обработках пеной в призабойной зоне добывающей скважины, которые применялись на месторождении Прудхо-Бэй для снижения чрезмерного газового фактора, возникающего при добыче реинжектируемого природного газа.Первая обработка включала закачку пенообразующего раствора в резервуар с последующей серией промывок. Считалось, что последующая добыча газа через размещенный пенообразующий раствор, аналогично режиму последовательного нагнетания, вызовет образование газоблокирующей пены на месте. Вторая пенная газоблокирующая обработка включала последовательную закачку пенообразующего раствора и порции азота. Ни одна из этих первых двух обработок пеной газоблокирования не показала снижения газового фактора после обработки.Третья пена, блокирующая газ, представляла собой азотную пену с качеством 65%, которая была предварительно сформирована на поверхности перед закачкой. Эта обработка значительно снизила газовый фактор обработанной производственной скважины в течение нескольких недель. Эти результаты предполагают, что для многих применений пен для природного газа и азота, улучшающих соответствие требованиям, закачка пены с использованием предварительно сформированного режима по сравнению с последовательным впрыском или режимом совместного впрыска приведет к улучшенным характеристикам пены в нефтяном пласте при проведении «околоскважинные» обработки.Если не могут быть приведены убедительные аргументы в пользу противоположного для конкретного применения, пены для большинства применений обработок для улучшения конформности ближнего и промежуточного ствола скважины должны быть предварительно сформированы на поверхности перед закачкой.

Последовательный процесс, также известный как процесс с чередованием воды с газом (WAG), заключающийся в последовательном и многократно чередующемся закачке порций CO 2 и водного вспенивающего раствора, часто предпочтителен при использовании пены CO 2 для целей контроля подвижности во время CO 2 затопление.Это связано с тем, что CO 2 , растворенный в водном растворе поверхностно-активного вещества, образует угольную кислоту, которая вызывает коррозию стальных труб. Из-за низкого поверхностного натяжения CO 2 образование и распространение пены намного более осуществимо (чем пена водяного пара, азота или природного газа) при реалистичных градиентах полевого давления, которые возникают по всему коллектору. [1]

Сообщалось об исследованиях компьютерного моделирования, которые показали, что оптимальная стратегия закачки для преодоления блокировки газа во время операций закачки газа — это попеременная / последовательная закачка отдельных больших пробок газа и вспенивающейся жидкости при максимально допустимом фиксированном значении. давление впрыска. [8] Это исследование ограничивалось закачкой пены в однородный пласт и не учитывало взаимодействие пены с нефтью. Режим закачки поверхностно-активного вещества с чередованием-газом (SAGA) для образования пены с контролем подвижности на месте был предложен для использования при проведении крупных проектов заводнения WAG в резервуарах Северного моря. [9]

Список литературы

  1. 1.0 1.1 Россен, W.R. 1996. Пены для увеличения нефтеотдачи. Пены — теория, измерения и применение , R.K. Prud’homme and S.A. Khan ed., 413-464. Нью-Йорк: Marcel Dekker Inc.
  2. ↑ Гауглиц, П.А., Фридманн, Ф., Кам, С.И. и др. 2002. Образование пены в пористой среде. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 13-17 апреля 2002 г. SPE-75177-MS. http://dx.doi.org/10.2118/75177-MS
  3. 3,0 3,1 3,2 3,3 3,4 Шрамм Л.Л. и Вассмут Ф.1994. Пены: основные принципы. Пены: основы и применение в нефтяной промышленности , изд. Л. Л. Шрамма, 3-45. Вашингтон, округ Колумбия: достижения в области химии, серия 242, American Chemical Soc.
  4. ↑ Llave, F.M. и Olsen, D.K. 1994. Использование смешанных поверхностно-активных веществ для создания пены для контроля подвижности при химическом заводнении. SPE Res Eng 9 (2): 125-132. SPE-20223-PA. http://dx.doi.org/10.2118/20223-PA
  5. ↑ Далланд М. и Ханссен Дж. Э. 1999.Пены с контролем газового фактора: демонстрация эффективности процесса производства пены на масляной основе в модели физического потока. Представлено на Международном симпозиуме SPE по нефтехимии, Хьюстон, Техас, 16-19 февраля 1999 г. SPE-50755-MS. http://dx.doi.org/10.2118/50755-MS
  6. ↑ Маннхард, К., Новосад, Дж. Дж., И Шрамм, Л. Л. 2000. Сравнительная оценка устойчивости пены к маслу. SPE Res Eval & Eng 3 (1): 23-34. SPE-60686-PA. http://dx.doi.org/10.2118/60686-PA
  7. ↑ Краузе Р.Э., Лейн, Р.Х., Кюне, Д.Л. и другие. 1992. Обработка добывающих скважин пеной для увеличения добычи нефти в Прудхо-Бэй. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 22-24 апреля 1992 г. SPE-24191-MS. http://dx.doi.org/10.2118/24191-MS
  8. ↑ Шан, Д. и Россен, W.R. 2002. Оптимальные стратегии впрыска для пены IOR. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 13-17 апреля 2002 г. SPE-75180-MS. http://dx.doi.org/10.2118/75180-MS
  9. ↑ Ханссен, Дж.E. et al. 1995. Закачка SAGA: новый комбинированный процесс IOR для стратифицированных коллекторов. Геологическое общество, Лондон, специальная публикация. 84 : 111-123. http://dx.doi.org/10.1144/GSL.SP.1995.084.01.12

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел, чтобы предоставить ссылки на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Пены

Поведение пены в пористой среде

Пены как средства контроля мобильности

Пены как блокирующие агенты

Области применения пен для повышения соответствия

PEH: полимеры, гели, пены, смолы

Категория

Свойства пены — PetroWiki

Объемная пена, обнаруженная в головке пивного стакана или в сочетании с моющими растворами, представляет собой метастабильную дисперсию газа относительно большого объема в непрерывной жидкой фазе, которая составляет относительно небольшой объем. пены.Альтернативное определение объемной пены — это «скопление пузырьков газа, отделенных друг от друга тонкими пленками жидкости». [1] В большинстве классических пен содержание газа довольно высокое (часто от 60 до 97% объема). В объемной форме, например, в наземных сооружениях и трубопроводах нефтепромыслов, пена образуется, когда газ контактирует с жидкостью в присутствии механического перемешивания. Используемый здесь термин «объемные пены» — это пены, которые существуют в контейнере (например, в бутылке или трубе), для которых объем контейнера намного больше, чем размер отдельных пузырьков пенного газа.

Общая природа пен

Капиллярные процессы контролируют образование и свойства пен в пористых средах. Пены, используемые для улучшения соответствия, представляют собой дисперсии микрогазовых пузырьков, как правило, с диаметром / длиной в диапазоне от 50 до 1000 мкм. Пена в пористой среде существует в виде отдельных микрогазовых пузырьков, находящихся в непосредственном контакте со смачивающей жидкостью стенок поры. Эти микрогазовые пузырьки разделены жидкими пластинками, которые перекрывают стенки пор и образуют жидкую перегородку в масштабе поры между пузырьками газа.Пена распространяется в большинстве пород матричного коллектора в виде цепочки пузырьков, в которой каждый газовый пузырь отделен от следующего жидкой пленкой из ламелей. Во многих случаях отдельные пузыри пены в породе матрицы коллектора могут иметь длину множества пор. Gauglitz et al. определили структуру пены в пористой среде как «дисперсию газа в непрерывной жидкой фазе с по крайней мере некоторыми путями газового потока, прерываемыми тонкими пленками жидкости, называемыми ламелями». [2]

Все пены, обсуждаемые на этой странице, и все пены, которые используются для улучшения соответствия, содержат поверхностно-активные вещества, растворенные в жидкой фазе пены для стабилизации газовой дисперсии в жидкости.Газовая фаза пены может включать как классический газ, так и сверхкритический газ, такой как сверхкритический / плотный CO 2 . За исключением специально отмеченного, все пены, обсуждаемые в этой главе, которые используются для улучшения соответствия требованиям нефтяных месторождений, являются пенами на водной основе. Эта глава ограничивается в первую очередь обсуждением пен на водной основе, стабилизированных поверхностно-активными веществами, для использования в улучшении соответствия во время операций по добыче нефти.

На рис. 1 показан двухмерный срез обобщенной системы объемной пены. [3] Тонкие пленки жидкости, разделяющие пузырьки пенного газа, определяются как ламели пены. Соединение трех ламелей газового пузыря под углом 120 ° называется границей плато. В устойчивых объемных пенах сферические пузырьки газа пены превращаются в ячейки пены, многогранники, разделенные почти плоскими тонкими пленками жидкости. Такая пена называется сухой пеной. Ячейки пены многогранников почти, но не совсем, являются правильными додекаэдрами. В трех измерениях четыре границы плато ячейки пены встречаются в точке под тетраэдрическим углом примерно 109 °. [3]

  • Рис. 1 — Обобщенный двухмерный срез системы объемной пены.

Пены в пористых средах обычно имеют пузырьки, размер которых равен или больше размера пор. Пена существует в пористой среде резервуар-порода в виде цепочек пузырьков, где граница плато пластин пены формируется на стенке поры и имеет, для статической нетекучей пены в теле поры, угол около 90 ° между жидкими пластинами и порой. стена.

Пенообразователи

Поверхностно-активные вещества являются необходимым третьим ингредиентом, необходимым для образования пен, обсуждаемых в этой статье. Понимание основ химии поверхностно-активных веществ важно при выборе подходящего поверхностно-активного вещества для конкретного применения пенопласта на нефтяных месторождениях.

Молекула поверхностно-активного вещества содержит в одной молекуле как полярный, так и неполярный сегменты. Полярный или гидрофильный сегмент молекулы поверхностно-активного вещества имеет сильное химическое сродство к воде.Неполярный или липофильный сегмент имеет сильное химическое сродство к неполярным углеводородным молекулам. Когда вода и масло или вода и газ находятся в контакте, молекулы поверхностно-активного вещества стремятся разделиться на поверхность раздела нефть / вода или газ / вода и уменьшить межфазное натяжение границы раздела. На рис. 2 изображена молекула поверхностно-активного вещества, находящаяся на границе раздела масло / вода. Разделение молекулы поверхностно-активного вещества на границу раздела газ / вода и последующее снижение межфазного натяжения является основным механизмом, с помощью которого поверхностно-активные вещества стабилизируют дисперсии газа в воде с образованием метастабильной пены.

  • Рис. 2 — Изображение молекулы полимера, находящейся на границе раздела масло / вода.

Поверхностно-активные вещества подразделяются на четыре типа, которые различаются по химическому составу полярной группы молекулы поверхностно-активного вещества.

  • Анионики — Полярная группа анионного поверхностно-активного вещества представляет собой соль (или, возможно, кислоту), где полярная анионная группа непосредственно присоединена к молекуле поверхностно-активного вещества, а противодействующий и поверхностно-неактивный катион (часто натрий) сильно разделен в водной среде. сторона границы раздела нефть / вода или газ / вода.Анионные поверхностно-активные вещества часто используются в пенопластах на нефтяных месторождениях, потому что они являются относительно хорошими поверхностно-активными веществами, обычно устойчивыми к удерживанию, довольно химически стабильными, доступными в промышленных масштабах и относительно недорогими.
  • Катионы — Полярная группа катионного поверхностно-активного вещества представляет собой соль, в которой полярная катионная группа непосредственно присоединена к молекуле поверхностно-активного вещества, а противодействующий и поверхностно-неактивный анион сильно разделен на водную сторону границы раздела масло / вода или газ / вода. . Катионные поверхностно-активные вещества нечасто используются в пенопластах для нефтепромыслов, поскольку они имеют тенденцию сильно адсорбироваться на поверхностях глин и песка и относительно дороги.
  • Неионогенные вещества — Полярная группа неионогенного поверхностно-активного вещества представляет собой не соль, а скорее химическое вещество, такое как спиртовая, эфирная или эпоксидная группа, которая усиливает свойства поверхностно-активного вещества путем создания контраста электроотрицательности. Неионные поверхностно-активные вещества менее чувствительны к высокой солености и могут быть относительно недорогими.
  • Амфотерные вещества — Амфотерные поверхностно-активные вещества содержат две или более характеристики перечисленных выше химических типов поверхностно-активных веществ.

Рис. 3 иллюстрирует химическую структуру выбранных поверхностно-активных веществ.В пределах любого из типов поверхностно-активных веществ могут быть существенные различия в их химическом составе и характеристиках. Химический состав, размер и степень разветвления липофильного сегмента молекулы поверхностно-активного вещества могут иметь большое влияние на характеристики пена-поверхностно-активное вещество, так же как и химия гидрофильной части молекулы поверхностно-активного вещества. Даже небольшие и тонкие различия в липофильном сегменте могут резко изменить свойства поверхностно-активного вещества. Большинство коммерческих продуктов с поверхностно-активными веществами содержат такое распределение типов и размеров поверхностно-активных веществ, которое дополнительно усложняет поверхностно-активные вещества, используемые в пенах, улучшающих конформность.

  • Рис. 3 — Типы химического состава ПАВ.

При использовании пены в сочетании с заводнением пара или любым применением с повышенными пластовыми температурами важно выбрать поверхностно-активное вещество, которое будет термически стабильным в течение необходимого срока службы пены в резервуаре. Исторически сложилось так, что альфа-олефиновые поверхностно-активные вещества и поверхностно-активные вещества на основе нефтяных сульфонатов наиболее широко использовались в пенах, применяемых в высокотемпературных (> 170 ° F) коллекторах.Сульфатные поверхностно-активные вещества иногда использовались в низкотемпературных (<120 ° F) резервуарах.

Альфа-олефинсульфонаты оказались одним из самых популярных и широко используемых химикатов поверхностно-активных веществ для использования в пенах. Это во многом привело к их совокупным хорошим характеристикам пенообразования, относительно хорошей солеустойчивости, хорошей термической стабильности, доступности и относительно низкой стоимости. Было предложено, чтобы смеси с различным химическим составом поверхностно-активных веществ обеспечивали преимущества при составлении соответствующих пен. [4]

Использование фторированных поверхностно-активных веществ в формулах пен показало некоторые перспективы. [5] Сообщалось, что фторированные поверхностно-активные вещества, используемые с другими поверхностно-активными веществами, часто улучшают устойчивость пены к маслу. [6] Фторированные поверхностно-активные вещества не нашли широкого применения в полевых условиях пенопластов в основном из-за их относительно высокой стоимости.

Свойства пены

Несколько свойств, важных для характеристики объемной пены, которая может присутствовать в бутылке, — это качество пены, текстура пены, распределение пузырьков по размерам, стабильность пены и плотность пены.Качество пены — это объемный процент газа в пене при заданном давлении и температуре. Качество пены может превышать 97%. Объемные пены, имеющие достаточно высокое качество пены, так что ячейки пены состоят из многогранных жидких пленок, называются сухими пенами. [3] Пены, улучшающие эксплуатационные характеристики нефтяных месторождений, обычно имеют свойства пены в диапазоне от 75 до 90%. При распространении через пористую среду подвижность многих пен уменьшается по мере увеличения качества пены до верхнего предела стабильности пены с точки зрения качества пены (верхний предел часто составляет> 93% качества пены).При работе с паровой пеной на месторождениях под качеством пара понимается массовая доля воды, которая превращается в пар.

Текстура пены является мерой среднего размера пузырьков газа. Как правило, по мере того, как текстура пены становится более тонкой, пена будет иметь большее сопротивление течению в матричной породе.

Распределение пузырьков по размерам — это мера распределения пузырьков газа по размерам в пене. При сохранении всех других переменных постоянными объемная пена с широким распределением размеров газовых пузырьков будет менее стабильной из-за диффузии газа от маленьких к большим пузырькам газа.Сопротивление, придаваемое пеной потоку жидкости в пористой среде, будет выше, когда размер пузырьков относительно однороден. [3]

Стабильность пены на водной основе зависит от химических и физических свойств стабилизированной поверхностно-активным веществом водной пленки, разделяющей пузырьки газа пены. Пены — метастабильные образования; следовательно, вся пена в конечном итоге разрушится. Разрушение пены является результатом чрезмерного утончения и разрыва жидких пленок пены со временем, а также диффузии газа из более мелких пузырьков в более крупные пузырьки, что приводит к увеличению размера пузырьков пены.Внешние воздействия, такие как контакт с пенообразователем (например, нефтью или неблагоприятной соленостью), контакт с гидрофобной поверхностью и местное нагревание, могут разрушить структуру пены.

Факторы, влияющие на стабильность ламелей пены, включают гравитационный дренаж, капиллярное всасывание, поверхностную эластичность, вязкость (объемную и поверхностную), электрическое двухслойное отталкивание и стерическое отталкивание. [3] Стабильность пены, находящейся в пористой среде, требует целого ряда дополнительных соображений, которые рассматриваются в следующем подразделе этой главы.

Одной из привлекательных особенностей пен для использования в операциях газового заводнения является относительно низкая эффективная плотность пен. (В качестве уравновешивающего примечания: пены для улучшения соответствия, содержащие сверхкритический CO 2 , могут достигать плотности, превышающей плотность некоторых сырой нефти.) Особенность низкой плотности имеет положительные последствия для пен, используемых как при заводнении с контролем подвижности, так и для блокирования поток жидкости. Низкая эффективная плотность приводит к тому, что пена выборочно размещается выше в интервале коллектора, где наиболее вероятно имеет место поток заводнения или добыча газа.

Для технического пояснения, поток пены в пористой среде фактически происходит в виде цепочки пузырьков газа, разделенных жидкими пластинками. Таким образом, строго говоря, течение пены в пористой среде происходит в виде двухфазного потока, а именно потока пузырьков газа и потока жидких ламелей. С этой более технически правильной точки зрения, именно низкая плотность газовой фазы способствует размещению пены выше в резервуаре. Во время заводнения газом, таким как заводнение паром или CO 2 , пены с низкой плотностью, используемые для контроля подвижности, хорошо подходят для решения и уменьшения общей проблемы подавления газа, которая часто препятствует контакту газа, добываемого закачиваемым газом, с нефтенасыщенностью ниже в вертикальный интервал коллектора.Выборочный контроль подвижности с помощью пен с низкой плотностью в верхней части коллектора заставит больше вытесняющего текучего газа контактировать с нефтенасыщенными секциями в нижней части коллектора.

Низкая плотность пены, используемой во время газоблокирующей обработки, будет иметь тенденцию к размещению пены выше в интервале коллектора, где наиболее вероятно возникновение наступательного потока газа и добычи. В этом отношении пены для использования в обработках блокирующим агентом хорошо подходят для обработки газового конуса и проблем образования газового конуса, возникающих в добывающих скважинах.Кроме того, вытеснение газа в относительно однородном пласте с хорошей вертикальной проницаемостью вызывает чрезмерную добычу газа в верхнем интервале добывающих скважин. Газоблокирующая пена с низкой плотностью способствует удобному размещению вокруг таких проблемных скважин.

При рассмотрении потенциальной выгоды от низкой плотности во время укладки пены для операции по повышению соответствия необходимо тщательно учитывать относительные эффекты сил тяжести по сравнению с силами вязкости, которые действуют во время укладки пены.То есть необходимо оценить горизонтальный градиент перепада давления по сравнению с вертикальным градиентом перепада давления, который пена будет испытывать во время ее потока и / или размещения в резервуаре.

Режим впрыска

Для впрыска улучшающих конформность пен используется один из трех четко различающихся режимов:

  • Последовательный впрыск
  • Совместный впрыск
  • Предварительно сформированная пена, созданная на поверхности перед инъекцией.

Последовательная закачка включает попеременную закачку в нефтяной пласт газовой и водной фаз пены.Совместная закачка включает совместную закачку в пласт газовой и жидкой фаз пены. Из-за значительной эффективной вязкости пен и связанной с этим плохой приемистости предварительно сформованных пен первые применения пен, улучшающих конформность, имели тенденцию включать режим последовательного или совместного впрыска. Кроме того, последовательный и совместный впрыск значительно проще реализовать в полевых условиях. Последовательный впрыск также позволяет избежать проблем, связанных с коррозией труб, если газ и пенообразующий раствор образуют коррозионную смесь, такую ​​как пеноматериалы CO 2 .

Концепция, подтвержденная лабораторными данными, заключается в том, что во время последовательного или совместного нагнетания пена будет образовываться на месте в основной породе коллектора. Это утверждение подтверждается ожиданием того, что газ с низкой вязкостью и высокой подвижностью будет иметь тенденцию попадать в водный пенообразующий раствор и образовывать пену на месте.

Тем не менее, есть две серьезные проблемы, связанные с противодействием. Во-первых, когда газ начинает проникать в водный раствор и образовывать пену на месте, вновь образованная пена будет существенно уменьшать последующее попадание газа и отводить последующий поток газа от оставшегося водного пенообразующего раствора, находящегося непосредственно перед первоначально образованной пеной.Это явление приводит к неэффективному и неэффективному использованию вводимых пенных химикатов и жидкостей для образования пены. Во-вторых, в промежуточных и дальних местах ствола скважины может не хватить механической энергии и / или перепада давления для образования пены на месте при использовании обычных пенообразующих растворов. Это особенно важно для пен, содержащих пар, азот и природный газ.

Krause et al. [7] сообщил об относительно обработках пеной в призабойной зоне добывающей скважины, которые применялись на месторождении Прудхо-Бэй для снижения чрезмерного газового фактора, возникающего при добыче реинжектируемого природного газа.Первая обработка включала закачку пенообразующего раствора в резервуар с последующей серией промывок. Считалось, что последующая добыча газа через размещенный пенообразующий раствор, аналогично режиму последовательного нагнетания, вызовет образование газоблокирующей пены на месте. Вторая пенная газоблокирующая обработка включала последовательную закачку пенообразующего раствора и порции азота. Ни одна из этих первых двух обработок пеной газоблокирования не показала снижения газового фактора после обработки.Третья пена, блокирующая газ, представляла собой азотную пену с качеством 65%, которая была предварительно сформирована на поверхности перед закачкой. Эта обработка значительно снизила газовый фактор обработанной производственной скважины в течение нескольких недель. Эти результаты предполагают, что для многих применений пен для природного газа и азота, улучшающих соответствие требованиям, закачка пены с использованием предварительно сформированного режима по сравнению с последовательным впрыском или режимом совместного впрыска приведет к улучшенным характеристикам пены в нефтяном пласте при проведении «околоскважинные» обработки.Если не могут быть приведены убедительные аргументы в пользу противоположного для конкретного применения, пены для большинства применений обработок для улучшения конформности ближнего и промежуточного ствола скважины должны быть предварительно сформированы на поверхности перед закачкой.

Последовательный процесс, также известный как процесс с чередованием воды с газом (WAG), заключающийся в последовательном и многократно чередующемся закачке порций CO 2 и водного вспенивающего раствора, часто предпочтителен при использовании пены CO 2 для целей контроля подвижности во время CO 2 затопление.Это связано с тем, что CO 2 , растворенный в водном растворе поверхностно-активного вещества, образует угольную кислоту, которая вызывает коррозию стальных труб. Из-за низкого поверхностного натяжения CO 2 образование и распространение пены намного более осуществимо (чем пена водяного пара, азота или природного газа) при реалистичных градиентах полевого давления, которые возникают по всему коллектору. [1]

Сообщалось об исследованиях компьютерного моделирования, которые показали, что оптимальная стратегия закачки для преодоления блокировки газа во время операций закачки газа — это попеременная / последовательная закачка отдельных больших пробок газа и вспенивающейся жидкости при максимально допустимом фиксированном значении. давление впрыска. [8] Это исследование ограничивалось закачкой пены в однородный пласт и не учитывало взаимодействие пены с нефтью. Режим закачки поверхностно-активного вещества с чередованием-газом (SAGA) для образования пены с контролем подвижности на месте был предложен для использования при проведении крупных проектов заводнения WAG в резервуарах Северного моря. [9]

Список литературы

  1. 1.0 1.1 Россен, W.R. 1996. Пены для увеличения нефтеотдачи. Пены — теория, измерения и применение , R.K. Prud’homme and S.A. Khan ed., 413-464. Нью-Йорк: Marcel Dekker Inc.
  2. ↑ Гауглиц, П.А., Фридманн, Ф., Кам, С.И. и др. 2002. Образование пены в пористой среде. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 13-17 апреля 2002 г. SPE-75177-MS. http://dx.doi.org/10.2118/75177-MS
  3. 3,0 3,1 3,2 3,3 3,4 Шрамм Л.Л. и Вассмут Ф.1994. Пены: основные принципы. Пены: основы и применение в нефтяной промышленности , изд. Л. Л. Шрамма, 3-45. Вашингтон, округ Колумбия: достижения в области химии, серия 242, American Chemical Soc.
  4. ↑ Llave, F.M. и Olsen, D.K. 1994. Использование смешанных поверхностно-активных веществ для создания пены для контроля подвижности при химическом заводнении. SPE Res Eng 9 (2): 125-132. SPE-20223-PA. http://dx.doi.org/10.2118/20223-PA
  5. ↑ Далланд М. и Ханссен Дж. Э. 1999.Пены с контролем газового фактора: демонстрация эффективности процесса производства пены на масляной основе в модели физического потока. Представлено на Международном симпозиуме SPE по нефтехимии, Хьюстон, Техас, 16-19 февраля 1999 г. SPE-50755-MS. http://dx.doi.org/10.2118/50755-MS
  6. ↑ Маннхард, К., Новосад, Дж. Дж., И Шрамм, Л. Л. 2000. Сравнительная оценка устойчивости пены к маслу. SPE Res Eval & Eng 3 (1): 23-34. SPE-60686-PA. http://dx.doi.org/10.2118/60686-PA
  7. ↑ Краузе Р.Э., Лейн, Р.Х., Кюне, Д.Л. и другие. 1992. Обработка добывающих скважин пеной для увеличения добычи нефти в Прудхо-Бэй. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 22-24 апреля 1992 г. SPE-24191-MS. http://dx.doi.org/10.2118/24191-MS
  8. ↑ Шан, Д. и Россен, W.R. 2002. Оптимальные стратегии впрыска для пены IOR. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 13-17 апреля 2002 г. SPE-75180-MS. http://dx.doi.org/10.2118/75180-MS
  9. ↑ Ханссен, Дж.E. et al. 1995. Закачка SAGA: новый комбинированный процесс IOR для стратифицированных коллекторов. Геологическое общество, Лондон, специальная публикация. 84 : 111-123. http://dx.doi.org/10.1144/GSL.SP.1995.084.01.12

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел, чтобы предоставить ссылки на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Пены

Поведение пены в пористой среде

Пены как средства контроля мобильности

Пены как блокирующие агенты

Области применения пен для повышения соответствия

PEH: полимеры, гели, пены, смолы

Категория

Свойства пены — PetroWiki

Объемная пена, обнаруженная в головке пивного стакана или в сочетании с моющими растворами, представляет собой метастабильную дисперсию газа относительно большого объема в непрерывной жидкой фазе, которая составляет относительно небольшой объем. пены.Альтернативное определение объемной пены — это «скопление пузырьков газа, отделенных друг от друга тонкими пленками жидкости». [1] В большинстве классических пен содержание газа довольно высокое (часто от 60 до 97% объема). В объемной форме, например, в наземных сооружениях и трубопроводах нефтепромыслов, пена образуется, когда газ контактирует с жидкостью в присутствии механического перемешивания. Используемый здесь термин «объемные пены» — это пены, которые существуют в контейнере (например, в бутылке или трубе), для которых объем контейнера намного больше, чем размер отдельных пузырьков пенного газа.

Общая природа пен

Капиллярные процессы контролируют образование и свойства пен в пористых средах. Пены, используемые для улучшения соответствия, представляют собой дисперсии микрогазовых пузырьков, как правило, с диаметром / длиной в диапазоне от 50 до 1000 мкм. Пена в пористой среде существует в виде отдельных микрогазовых пузырьков, находящихся в непосредственном контакте со смачивающей жидкостью стенок поры. Эти микрогазовые пузырьки разделены жидкими пластинками, которые перекрывают стенки пор и образуют жидкую перегородку в масштабе поры между пузырьками газа.Пена распространяется в большинстве пород матричного коллектора в виде цепочки пузырьков, в которой каждый газовый пузырь отделен от следующего жидкой пленкой из ламелей. Во многих случаях отдельные пузыри пены в породе матрицы коллектора могут иметь длину множества пор. Gauglitz et al. определили структуру пены в пористой среде как «дисперсию газа в непрерывной жидкой фазе с по крайней мере некоторыми путями газового потока, прерываемыми тонкими пленками жидкости, называемыми ламелями». [2]

Все пены, обсуждаемые на этой странице, и все пены, которые используются для улучшения соответствия, содержат поверхностно-активные вещества, растворенные в жидкой фазе пены для стабилизации газовой дисперсии в жидкости.Газовая фаза пены может включать как классический газ, так и сверхкритический газ, такой как сверхкритический / плотный CO 2 . За исключением специально отмеченного, все пены, обсуждаемые в этой главе, которые используются для улучшения соответствия требованиям нефтяных месторождений, являются пенами на водной основе. Эта глава ограничивается в первую очередь обсуждением пен на водной основе, стабилизированных поверхностно-активными веществами, для использования в улучшении соответствия во время операций по добыче нефти.

На рис. 1 показан двухмерный срез обобщенной системы объемной пены. [3] Тонкие пленки жидкости, разделяющие пузырьки пенного газа, определяются как ламели пены. Соединение трех ламелей газового пузыря под углом 120 ° называется границей плато. В устойчивых объемных пенах сферические пузырьки газа пены превращаются в ячейки пены, многогранники, разделенные почти плоскими тонкими пленками жидкости. Такая пена называется сухой пеной. Ячейки пены многогранников почти, но не совсем, являются правильными додекаэдрами. В трех измерениях четыре границы плато ячейки пены встречаются в точке под тетраэдрическим углом примерно 109 °. [3]

  • Рис. 1 — Обобщенный двухмерный срез системы объемной пены.

Пены в пористых средах обычно имеют пузырьки, размер которых равен или больше размера пор. Пена существует в пористой среде резервуар-порода в виде цепочек пузырьков, где граница плато пластин пены формируется на стенке поры и имеет, для статической нетекучей пены в теле поры, угол около 90 ° между жидкими пластинами и порой. стена.

Пенообразователи

Поверхностно-активные вещества являются необходимым третьим ингредиентом, необходимым для образования пен, обсуждаемых в этой статье. Понимание основ химии поверхностно-активных веществ важно при выборе подходящего поверхностно-активного вещества для конкретного применения пенопласта на нефтяных месторождениях.

Молекула поверхностно-активного вещества содержит в одной молекуле как полярный, так и неполярный сегменты. Полярный или гидрофильный сегмент молекулы поверхностно-активного вещества имеет сильное химическое сродство к воде.Неполярный или липофильный сегмент имеет сильное химическое сродство к неполярным углеводородным молекулам. Когда вода и масло или вода и газ находятся в контакте, молекулы поверхностно-активного вещества стремятся разделиться на поверхность раздела нефть / вода или газ / вода и уменьшить межфазное натяжение границы раздела. На рис. 2 изображена молекула поверхностно-активного вещества, находящаяся на границе раздела масло / вода. Разделение молекулы поверхностно-активного вещества на границу раздела газ / вода и последующее снижение межфазного натяжения является основным механизмом, с помощью которого поверхностно-активные вещества стабилизируют дисперсии газа в воде с образованием метастабильной пены.

  • Рис. 2 — Изображение молекулы полимера, находящейся на границе раздела масло / вода.

Поверхностно-активные вещества подразделяются на четыре типа, которые различаются по химическому составу полярной группы молекулы поверхностно-активного вещества.

  • Анионики — Полярная группа анионного поверхностно-активного вещества представляет собой соль (или, возможно, кислоту), где полярная анионная группа непосредственно присоединена к молекуле поверхностно-активного вещества, а противодействующий и поверхностно-неактивный катион (часто натрий) сильно разделен в водной среде. сторона границы раздела нефть / вода или газ / вода.Анионные поверхностно-активные вещества часто используются в пенопластах на нефтяных месторождениях, потому что они являются относительно хорошими поверхностно-активными веществами, обычно устойчивыми к удерживанию, довольно химически стабильными, доступными в промышленных масштабах и относительно недорогими.
  • Катионы — Полярная группа катионного поверхностно-активного вещества представляет собой соль, в которой полярная катионная группа непосредственно присоединена к молекуле поверхностно-активного вещества, а противодействующий и поверхностно-неактивный анион сильно разделен на водную сторону границы раздела масло / вода или газ / вода. . Катионные поверхностно-активные вещества нечасто используются в пенопластах для нефтепромыслов, поскольку они имеют тенденцию сильно адсорбироваться на поверхностях глин и песка и относительно дороги.
  • Неионогенные вещества — Полярная группа неионогенного поверхностно-активного вещества представляет собой не соль, а скорее химическое вещество, такое как спиртовая, эфирная или эпоксидная группа, которая усиливает свойства поверхностно-активного вещества путем создания контраста электроотрицательности. Неионные поверхностно-активные вещества менее чувствительны к высокой солености и могут быть относительно недорогими.
  • Амфотерные вещества — Амфотерные поверхностно-активные вещества содержат две или более характеристики перечисленных выше химических типов поверхностно-активных веществ.

Рис. 3 иллюстрирует химическую структуру выбранных поверхностно-активных веществ.В пределах любого из типов поверхностно-активных веществ могут быть существенные различия в их химическом составе и характеристиках. Химический состав, размер и степень разветвления липофильного сегмента молекулы поверхностно-активного вещества могут иметь большое влияние на характеристики пена-поверхностно-активное вещество, так же как и химия гидрофильной части молекулы поверхностно-активного вещества. Даже небольшие и тонкие различия в липофильном сегменте могут резко изменить свойства поверхностно-активного вещества. Большинство коммерческих продуктов с поверхностно-активными веществами содержат такое распределение типов и размеров поверхностно-активных веществ, которое дополнительно усложняет поверхностно-активные вещества, используемые в пенах, улучшающих конформность.

  • Рис. 3 — Типы химического состава ПАВ.

При использовании пены в сочетании с заводнением пара или любым применением с повышенными пластовыми температурами важно выбрать поверхностно-активное вещество, которое будет термически стабильным в течение необходимого срока службы пены в резервуаре. Исторически сложилось так, что альфа-олефиновые поверхностно-активные вещества и поверхностно-активные вещества на основе нефтяных сульфонатов наиболее широко использовались в пенах, применяемых в высокотемпературных (> 170 ° F) коллекторах.Сульфатные поверхностно-активные вещества иногда использовались в низкотемпературных (<120 ° F) резервуарах.

Альфа-олефинсульфонаты оказались одним из самых популярных и широко используемых химикатов поверхностно-активных веществ для использования в пенах. Это во многом привело к их совокупным хорошим характеристикам пенообразования, относительно хорошей солеустойчивости, хорошей термической стабильности, доступности и относительно низкой стоимости. Было предложено, чтобы смеси с различным химическим составом поверхностно-активных веществ обеспечивали преимущества при составлении соответствующих пен. [4]

Использование фторированных поверхностно-активных веществ в формулах пен показало некоторые перспективы. [5] Сообщалось, что фторированные поверхностно-активные вещества, используемые с другими поверхностно-активными веществами, часто улучшают устойчивость пены к маслу. [6] Фторированные поверхностно-активные вещества не нашли широкого применения в полевых условиях пенопластов в основном из-за их относительно высокой стоимости.

Свойства пены

Несколько свойств, важных для характеристики объемной пены, которая может присутствовать в бутылке, — это качество пены, текстура пены, распределение пузырьков по размерам, стабильность пены и плотность пены.Качество пены — это объемный процент газа в пене при заданном давлении и температуре. Качество пены может превышать 97%. Объемные пены, имеющие достаточно высокое качество пены, так что ячейки пены состоят из многогранных жидких пленок, называются сухими пенами. [3] Пены, улучшающие эксплуатационные характеристики нефтяных месторождений, обычно имеют свойства пены в диапазоне от 75 до 90%. При распространении через пористую среду подвижность многих пен уменьшается по мере увеличения качества пены до верхнего предела стабильности пены с точки зрения качества пены (верхний предел часто составляет> 93% качества пены).При работе с паровой пеной на месторождениях под качеством пара понимается массовая доля воды, которая превращается в пар.

Текстура пены является мерой среднего размера пузырьков газа. Как правило, по мере того, как текстура пены становится более тонкой, пена будет иметь большее сопротивление течению в матричной породе.

Распределение пузырьков по размерам — это мера распределения пузырьков газа по размерам в пене. При сохранении всех других переменных постоянными объемная пена с широким распределением размеров газовых пузырьков будет менее стабильной из-за диффузии газа от маленьких к большим пузырькам газа.Сопротивление, придаваемое пеной потоку жидкости в пористой среде, будет выше, когда размер пузырьков относительно однороден. [3]

Стабильность пены на водной основе зависит от химических и физических свойств стабилизированной поверхностно-активным веществом водной пленки, разделяющей пузырьки газа пены. Пены — метастабильные образования; следовательно, вся пена в конечном итоге разрушится. Разрушение пены является результатом чрезмерного утончения и разрыва жидких пленок пены со временем, а также диффузии газа из более мелких пузырьков в более крупные пузырьки, что приводит к увеличению размера пузырьков пены.Внешние воздействия, такие как контакт с пенообразователем (например, нефтью или неблагоприятной соленостью), контакт с гидрофобной поверхностью и местное нагревание, могут разрушить структуру пены.

Факторы, влияющие на стабильность ламелей пены, включают гравитационный дренаж, капиллярное всасывание, поверхностную эластичность, вязкость (объемную и поверхностную), электрическое двухслойное отталкивание и стерическое отталкивание. [3] Стабильность пены, находящейся в пористой среде, требует целого ряда дополнительных соображений, которые рассматриваются в следующем подразделе этой главы.

Одной из привлекательных особенностей пен для использования в операциях газового заводнения является относительно низкая эффективная плотность пен. (В качестве уравновешивающего примечания: пены для улучшения соответствия, содержащие сверхкритический CO 2 , могут достигать плотности, превышающей плотность некоторых сырой нефти.) Особенность низкой плотности имеет положительные последствия для пен, используемых как при заводнении с контролем подвижности, так и для блокирования поток жидкости. Низкая эффективная плотность приводит к тому, что пена выборочно размещается выше в интервале коллектора, где наиболее вероятно имеет место поток заводнения или добыча газа.

Для технического пояснения, поток пены в пористой среде фактически происходит в виде цепочки пузырьков газа, разделенных жидкими пластинками. Таким образом, строго говоря, течение пены в пористой среде происходит в виде двухфазного потока, а именно потока пузырьков газа и потока жидких ламелей. С этой более технически правильной точки зрения, именно низкая плотность газовой фазы способствует размещению пены выше в резервуаре. Во время заводнения газом, таким как заводнение паром или CO 2 , пены с низкой плотностью, используемые для контроля подвижности, хорошо подходят для решения и уменьшения общей проблемы подавления газа, которая часто препятствует контакту газа, добываемого закачиваемым газом, с нефтенасыщенностью ниже в вертикальный интервал коллектора.Выборочный контроль подвижности с помощью пен с низкой плотностью в верхней части коллектора заставит больше вытесняющего текучего газа контактировать с нефтенасыщенными секциями в нижней части коллектора.

Низкая плотность пены, используемой во время газоблокирующей обработки, будет иметь тенденцию к размещению пены выше в интервале коллектора, где наиболее вероятно возникновение наступательного потока газа и добычи. В этом отношении пены для использования в обработках блокирующим агентом хорошо подходят для обработки газового конуса и проблем образования газового конуса, возникающих в добывающих скважинах.Кроме того, вытеснение газа в относительно однородном пласте с хорошей вертикальной проницаемостью вызывает чрезмерную добычу газа в верхнем интервале добывающих скважин. Газоблокирующая пена с низкой плотностью способствует удобному размещению вокруг таких проблемных скважин.

При рассмотрении потенциальной выгоды от низкой плотности во время укладки пены для операции по повышению соответствия необходимо тщательно учитывать относительные эффекты сил тяжести по сравнению с силами вязкости, которые действуют во время укладки пены.То есть необходимо оценить горизонтальный градиент перепада давления по сравнению с вертикальным градиентом перепада давления, который пена будет испытывать во время ее потока и / или размещения в резервуаре.

Режим впрыска

Для впрыска улучшающих конформность пен используется один из трех четко различающихся режимов:

  • Последовательный впрыск
  • Совместный впрыск
  • Предварительно сформированная пена, созданная на поверхности перед инъекцией.

Последовательная закачка включает попеременную закачку в нефтяной пласт газовой и водной фаз пены.Совместная закачка включает совместную закачку в пласт газовой и жидкой фаз пены. Из-за значительной эффективной вязкости пен и связанной с этим плохой приемистости предварительно сформованных пен первые применения пен, улучшающих конформность, имели тенденцию включать режим последовательного или совместного впрыска. Кроме того, последовательный и совместный впрыск значительно проще реализовать в полевых условиях. Последовательный впрыск также позволяет избежать проблем, связанных с коррозией труб, если газ и пенообразующий раствор образуют коррозионную смесь, такую ​​как пеноматериалы CO 2 .

Концепция, подтвержденная лабораторными данными, заключается в том, что во время последовательного или совместного нагнетания пена будет образовываться на месте в основной породе коллектора. Это утверждение подтверждается ожиданием того, что газ с низкой вязкостью и высокой подвижностью будет иметь тенденцию попадать в водный пенообразующий раствор и образовывать пену на месте.

Тем не менее, есть две серьезные проблемы, связанные с противодействием. Во-первых, когда газ начинает проникать в водный раствор и образовывать пену на месте, вновь образованная пена будет существенно уменьшать последующее попадание газа и отводить последующий поток газа от оставшегося водного пенообразующего раствора, находящегося непосредственно перед первоначально образованной пеной.Это явление приводит к неэффективному и неэффективному использованию вводимых пенных химикатов и жидкостей для образования пены. Во-вторых, в промежуточных и дальних местах ствола скважины может не хватить механической энергии и / или перепада давления для образования пены на месте при использовании обычных пенообразующих растворов. Это особенно важно для пен, содержащих пар, азот и природный газ.

Krause et al. [7] сообщил об относительно обработках пеной в призабойной зоне добывающей скважины, которые применялись на месторождении Прудхо-Бэй для снижения чрезмерного газового фактора, возникающего при добыче реинжектируемого природного газа.Первая обработка включала закачку пенообразующего раствора в резервуар с последующей серией промывок. Считалось, что последующая добыча газа через размещенный пенообразующий раствор, аналогично режиму последовательного нагнетания, вызовет образование газоблокирующей пены на месте. Вторая пенная газоблокирующая обработка включала последовательную закачку пенообразующего раствора и порции азота. Ни одна из этих первых двух обработок пеной газоблокирования не показала снижения газового фактора после обработки.Третья пена, блокирующая газ, представляла собой азотную пену с качеством 65%, которая была предварительно сформирована на поверхности перед закачкой. Эта обработка значительно снизила газовый фактор обработанной производственной скважины в течение нескольких недель. Эти результаты предполагают, что для многих применений пен для природного газа и азота, улучшающих соответствие требованиям, закачка пены с использованием предварительно сформированного режима по сравнению с последовательным впрыском или режимом совместного впрыска приведет к улучшенным характеристикам пены в нефтяном пласте при проведении «околоскважинные» обработки.Если не могут быть приведены убедительные аргументы в пользу противоположного для конкретного применения, пены для большинства применений обработок для улучшения конформности ближнего и промежуточного ствола скважины должны быть предварительно сформированы на поверхности перед закачкой.

Последовательный процесс, также известный как процесс с чередованием воды с газом (WAG), заключающийся в последовательном и многократно чередующемся закачке порций CO 2 и водного вспенивающего раствора, часто предпочтителен при использовании пены CO 2 для целей контроля подвижности во время CO 2 затопление.Это связано с тем, что CO 2 , растворенный в водном растворе поверхностно-активного вещества, образует угольную кислоту, которая вызывает коррозию стальных труб. Из-за низкого поверхностного натяжения CO 2 образование и распространение пены намного более осуществимо (чем пена водяного пара, азота или природного газа) при реалистичных градиентах полевого давления, которые возникают по всему коллектору. [1]

Сообщалось об исследованиях компьютерного моделирования, которые показали, что оптимальная стратегия закачки для преодоления блокировки газа во время операций закачки газа — это попеременная / последовательная закачка отдельных больших пробок газа и вспенивающейся жидкости при максимально допустимом фиксированном значении. давление впрыска. [8] Это исследование ограничивалось закачкой пены в однородный пласт и не учитывало взаимодействие пены с нефтью. Режим закачки поверхностно-активного вещества с чередованием-газом (SAGA) для образования пены с контролем подвижности на месте был предложен для использования при проведении крупных проектов заводнения WAG в резервуарах Северного моря. [9]

Список литературы

  1. 1.0 1.1 Россен, W.R. 1996. Пены для увеличения нефтеотдачи. Пены — теория, измерения и применение , R.K. Prud’homme and S.A. Khan ed., 413-464. Нью-Йорк: Marcel Dekker Inc.
  2. ↑ Гауглиц, П.А., Фридманн, Ф., Кам, С.И. и др. 2002. Образование пены в пористой среде. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 13-17 апреля 2002 г. SPE-75177-MS. http://dx.doi.org/10.2118/75177-MS
  3. 3,0 3,1 3,2 3,3 3,4 Шрамм Л.Л. и Вассмут Ф.1994. Пены: основные принципы. Пены: основы и применение в нефтяной промышленности , изд. Л. Л. Шрамма, 3-45. Вашингтон, округ Колумбия: достижения в области химии, серия 242, American Chemical Soc.
  4. ↑ Llave, F.M. и Olsen, D.K. 1994. Использование смешанных поверхностно-активных веществ для создания пены для контроля подвижности при химическом заводнении. SPE Res Eng 9 (2): 125-132. SPE-20223-PA. http://dx.doi.org/10.2118/20223-PA
  5. ↑ Далланд М. и Ханссен Дж. Э. 1999.Пены с контролем газового фактора: демонстрация эффективности процесса производства пены на масляной основе в модели физического потока. Представлено на Международном симпозиуме SPE по нефтехимии, Хьюстон, Техас, 16-19 февраля 1999 г. SPE-50755-MS. http://dx.doi.org/10.2118/50755-MS
  6. ↑ Маннхард, К., Новосад, Дж. Дж., И Шрамм, Л. Л. 2000. Сравнительная оценка устойчивости пены к маслу. SPE Res Eval & Eng 3 (1): 23-34. SPE-60686-PA. http://dx.doi.org/10.2118/60686-PA
  7. ↑ Краузе Р.Э., Лейн, Р.Х., Кюне, Д.Л. и другие. 1992. Обработка добывающих скважин пеной для увеличения добычи нефти в Прудхо-Бэй. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 22-24 апреля 1992 г. SPE-24191-MS. http://dx.doi.org/10.2118/24191-MS
  8. ↑ Шан, Д. и Россен, W.R. 2002. Оптимальные стратегии впрыска для пены IOR. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 13-17 апреля 2002 г. SPE-75180-MS. http://dx.doi.org/10.2118/75180-MS
  9. ↑ Ханссен, Дж.E. et al. 1995. Закачка SAGA: новый комбинированный процесс IOR для стратифицированных коллекторов. Геологическое общество, Лондон, специальная публикация. 84 : 111-123. http://dx.doi.org/10.1144/GSL.SP.1995.084.01.12

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел, чтобы предоставить ссылки на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Пены

Поведение пены в пористой среде

Пены как средства контроля мобильности

Пены как блокирующие агенты

Области применения пен для повышения соответствия

PEH: полимеры, гели, пены, смолы

Категория

Пеноматериал

— обзор

2.1 Механические и динамические характеристики ячеистого материала

Пеноматериалы обычно отличаются высоким отношением прочности к весу, а также отличными звуко- и теплоизоляционными свойствами по сравнению с другими инженерными материалами. Пены можно разделить на три основных типа, включая двухмерные (2D) соты, трехмерные (3D) с конфигурацией открытых ячеек и трехмерные с конфигурацией закрытых ячеек, как показано на рис. 1. Ячейки в пенопластах с открытыми ячейками соединены между собой. подпорками, и стенки ячеек разрушаются, поскольку такая жидкость может проходить через ячейки.С другой стороны, ячейки пенопласта с закрытыми ячейками полностью закрыты стенками ячеек, так что поток жидкости затруднен [19]. Конфигурация с закрытыми ячейками обычно сильнее, чем конфигурация с открытыми ячейками.

Рис. 1. Ячеистая структура пеноматериала (а) закрытые ячейки- (б) открытые ячейки- (в) соты.

Воспроизведено из Hitti, K., 2011. Прямое численное моделирование сложных репрезентативных элементов объема (RVE): создание, разрешение и гомогенизация.

Механический отклик вспененного материала зависит от микроструктуры ячеек, включая размер ячеек и топологию ячеек, свойства объемного материала и относительную плотность вспененного материала [20].Относительная плотность вспененного материала (ρ *) определяется формулой. (1):

(1) ρ * = ρρB

, где ρ B и ρ — плотности объемного материала, связанного со стенкой ячеек и пеной соответственно. Как правило, пеноматериал с большей относительной плотностью показывает большую механическую прочность, и это можно отнести к большему объему материала внутри пенопласта [21].

Влияние микроструктуры ячеек на поведение пеноматериалов обусловлено тем фактом, что механизм деформации пеноматериала на уровне ячеек определяется изгибом и растяжением стенки ячеек с последующим короблением и разрывом на стадии после выхода пласта [22] .На прочность на изгиб стенки ячеек влияет размер ячейки, при этом меньший размер ячейки показывает более высокую прочность из-за увеличения прочности краев ячейки [23]. Поскольку на механическое поведение ячеистых материалов влияет микроструктура ячеек, морфологические дефекты микроструктуры ячеек, такие как неоднородная толщина стенок ячеек, вариации размеров ячеек, сломанные стенки ячеек, смещения стенок ячеек и недостающие ячейки, имеют значительное влияние. о механическом поведении металлических пен [24].

Пеноматериалы обычно не используются там, где преобладают растягивающие и сдвиговые нагрузки. Однако обычно они используются там, где ожидаются сжимающие нагрузки. Наиболее привлекательной особенностью пен является способность подвергаться большой деформации при сохранении низкого постоянного уровня напряжения перед областью уплотнения [22]. Типичная реакция вспененного материала на сжатие и деформация, как показано на рис. края ячеек постепенно соприкасаются друг с другом, и материал приобретает объемные свойства.

Рис. 2. Типичная кривая напряжения-деформации сжатия для пеноматериалов.

Наиболее распространенными механическими свойствами пеноматериалов являются напряжение плато (σ P ), модуль упругости (E), предел текучести и деформация уплотнения.

Напряжение плато (σ P ) является функцией относительной плотности пены и определяется уравнением. (2):

(2) σP = C (ρ *) m

, где коэффициенты C и m являются параметрами материала.

Модуль упругости (E) может быть получен как наклон участка начальной нагрузки кривой, показанной на рис.2. Деформация уплотнения (ε D ) — это деформация, при которой пена полностью раздавливается и наблюдается резкое увеличение наклона кривой зависимости напряжения от деформации. Предел текучести (σ Y ) вспененного материала может быть получен с помощью следующего уравнения. (3) разработан Reyes et al. [25].

(3) σY = σP + γεεD + α2ln [11– (εεD) β]

Где γ, α 2 , ε D , β — параметры материала, а ε — эквивалентная деформация.

Среди видов пен, металлические и полимерные вспененные материалы были предметом многочисленных исследований на ударопрочность.Металлические пены могут быть получены из различных основных металлов, таких как алюминий (Al), магний (Mg), медь (Cu) и титан (Ti). По сравнению с другими металлическими пенами, алюминий был наиболее изученным типом из-за его превосходных характеристик и низкой относительной плотности, которая могла достигать всего 3% от объема материала.

Полимерные (неметаллические) пены низкой плотности широко применялись для обеспечения ударопрочности в автомобильной промышленности из-за их превосходной способности поглощать энергию.Они используются в качестве наполнителя в бамперах и в качестве усиления в балках крыши и дверей для усиления слабых участков конструкции автомобиля и улучшения их реакции на ударные нагрузки [26]. Основное преимущество полимерной пены состоит в том, что характеристики поглощения энергии не зависят от направления нагрузки и, таким образом, она способна очень эффективно поглощать наклонную ударную нагрузку.

Что касается динамического поведения вспененных материалов, динамический отклик ячеистого материала отличается от его квазистатического аналога из-за эффекта скорости деформации [27].Чувствительность клеточного материала к скорости деформации увеличивается с увеличением относительной плотности клеточного материала [28]. Макроскопическая чувствительность ячеистого материала к скорости деформации может быть связана со многими источниками, включая чувствительность к скорости деформации основного материала [29], инерционные эффекты отдельных стенок ячеек [30], влияние давления захваченного воздуха. в сотах [31] и ударно-волновые эффекты, вызывающие динамическую локализацию дробления [30,32,33].

Расчетные характеристики аэрозольной пенополиуретановой изоляции

Материалы для воздушных барьеров


Подъезд

Воздушные барьеры, создаваемые с помощью распыляемой полиуретановой пены, должны быть основной стратегией, используемой при проектировании высокоэффективных конструкций крыши или чердака.Распыление пенополиуретана обеспечивает:

  • Снижение инфильтрации и эксфильтрации как влаги, так и воздуха
  • В сборку добавлены стойки и прочность на сдвиг
  • Превосходные изоляционные свойства
  • Контролируемая тепловая нагрузка приборов и воздуховодов, расположенных в помещении

Материалы воздушного барьера Должны быть:

  • Непроницаем для воздуха
  • Непрерывно по всей ограждающей конструкции
  • Способны противостоять силам, которые могут действовать на них во время и после строительства
  • Срок службы в течение ожидаемого срока службы здания

Чтобы проектировать и строить безопасные, здоровые, долговечные, удобные и экономичные здания, воздушный поток необходимо контролировать.Неконтролируемый воздушный поток несет влагу, которая влияет на долговременные характеристики материала (пригодность к эксплуатации), структурную целостность (долговечность), качество воздуха в помещении (распределение загрязняющих веществ и расположение резервуаров с микробами) и характеристики тепловой энергии. Одна из ключевых стратегий управления воздушным потоком — использование воздушных заслонок.

Воздушные барьеры предназначены для защиты от воздействующих на них колебаний давления воздуха. Системы аэрозольной пены могут служить в качестве эффективного воздушного барьера, наносимого либо снаружи на структурные элементы (пена с закрытыми ячейками), либо с внутренней стороны (пена с закрытыми и / или открытыми ячейками) внутри полых систем при надлежащей толщине.

Системы воздушного барьера предотвращают выход наружного воздуха из ограждения здания или внутреннего воздуха из ограждения здания, в зависимости от климата или конфигурации. Иногда системы воздушного барьера делают и то, и другое.

Related Post